“The Missing Manual series is simply the most intelligent and usable series of guidebooks...”
—KEVIN KELLY, CO-FOUNDER OF WIRED

HTMLS

the missing manual’

The book that should have been in the box®

O REILLY" Matthew MacDonald

www.it-ebooks.info

(c) ketabton.com: The Digital Library
HTML5 / WEB DEVELOPMENT

HTML5 is more than a markup language—it’s a collection

of several independent web standards. Fortunately, this
expanded guide covers everything you need in one convenient
place. With step-by-step tutorials and real-world examples,
HTML5: The Missing Manual shows you how to build web
apps that include video tools, dynamic graphics, geolocation,
offline features, and responsive layouts for mobile devices.

the missing manual’

The book that should have been in the box®

Matthew
MacDonald is
 a science and

technology writer

Add audio and video without plugins. Build playback Sl ARSI il E) CIomE

pages that work in every browser. books to his name. He's

known for books about
Create stunning visuals with Canvas. Draw shapes,

pictures, and text; play animations; and run interactive
games. Creating a Website: The

building websites, including

Jazz up your pages with CSS3. Add fancy fonts and FASEE] el Ele

eye-catching effects with transitions and animation. WordPress: The Missing

Design better web forms. Collect information from Mgz, &5 WEl &S St

visitors more efficiently with HTML5 form elements. handbooks like Your Brain:

- . . . The Missing Manual and Your
Build it once, run it everywhere. Use responsive design e . .

to make your site look good on desktops, tablets, and
smartphones.

Bodly: The Missing Manual.

Include rich desktop features. Build self-sufficient web
apps that work offline and store the data users need.

Us $39.99 CAN $41.99

ISBN: 978-1-449-36326-0 O,REILLY®

53999 missingmanuals.com
|" ||| || |||| ||| twitter: @missingmanuals

9 7814491363260 facebook.com/MissingManuals

(c) ketabton.com: The Digital Library

HTMLS

2nd Edition

the manual’

The book that should have been in the box®

Matthew MacDonald

O’REILLY"

Beijing | Cambridge | Farnham | K&ln | Sebastopol | Tokyo

www.it-ebooks.info

(c) ketabton.com: The Digital Library

HTML5: The Missing Manual, 2nd Edition
by Matthew MacDonald

Copyright © 2014 Matthew MacDonald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http:/my.safaribooksonline.com).
For more information, contact our corporate/institutional sales department:

(800) 998-9938 or corporate@oreilly.com.

August 2011: First Edition.
December 2013: Second Edition

Revision History for the Second Edition:
2013-12-09 First release
See http://oreil.ly/htmI5tmm_2e for release details.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing
Manual logo, and “The book that should have been in the box” are trademarks of
O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly Media is aware of a trademark claim, the
designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher

and author assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained in it.

ISBN-13: 978-1-4493-6326-0

[LSI]

www.it-ebooks.info

(c) ketabton.com: The Digital Library

Part One:

Contents

The MissingCredits vii

Introduction ... Xi

Modern Markup

CHAPTER T

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

Introducing HTMLS 3
The Story of HTMLS o e 3
Three Key Principles of HTMLS 7
Your First Look at HTMLS Markup. oo e 10
A Closer Look at HTMLS Syntax ... 16
HTMLS's Element Family. ... oo e 21
USINg HTMLS Todayo e 26
Structuring Pages with SemanticElements 37
Introducing the Semantic Elements 38
Retrofitting a Traditional HTML Page o, 39
Browser Compatibility for the Semantic Elements 51
Designing a Site with the Semantic Elements.......................... 53
The HTML5 Outlining System. ... o 65
Writing More MeaningfulMarkup 75
The Semantic Elements Revisited oo i i, 76
Other Standards That Boost Semantics. ...t 82
A Practical Example: Retrofitting an “About Me” Page 88
How Search EnginesUse Metadata 93
Building Better WebForms 103
Understanding FOrms oo 104
Revamping a Traditional HTML Form............ 105
Validation: Stopping Errors.o 12
Browser Support for Web Forms and Validation...................... 19
New Types of INnput 123
New Elements 130
AnHTML EditorinaWebPage, 136

www.it-ebooks.info

(c) ketabton.com: The Digital Library

Part Two: Video, Graphics, and Glitz
CHAPTERS5: AudioandVideo... 143
The Evolutionof Web Video. i 144
Introducing HTML5 Audioand Video. ... 145
Understanding the HTML5 MediaFormats........................... 149
Fallbacks: How to Please Every Browser. ...t 154
Controlling Your Player with JavaScript............ 160
Video Captions ..o ot 169
CHAPTER 6: Fancy Fonts and EffectswithCSS3..................... .. 177
UsSINg CSS3 T0day. . oottt e 178
Building Better Boxes ... 184
Creating Effects with Transitions. 195
WeEb FONES .. 206
CHAPTER 7: Responsive Web DesignwithCSS3 221
Responsive Design: The BasiCSoov it 222
Adapting Your Layout with Media Queriesoin.. 231
CHAPTER 8: Basic Drawing withtheCanvas........................... 245
Getting Started withthe Canvas........... 246
Building a Basic Paint Program 263
Browser Compatibility fortheCanvas................. 271
CHAPTER 9: Advanced Canvas: Interactivity and Animation....... ... 275
Other Things You Can Draw ontheCanvas. ..o, 275
Shadows and Fancy Fills. 281
Making Your Shapes Interactive i 293
Animatingthe Canvas 300
A Practical Example: The Maze Game ...t 307

Part Three: Building Web Apps

CHAPTER10: StoringYourData........ 319
Web Storage BasiCs. ..ot 320
Deeperinto Web Storage. ... 326
Reading Files. 332
IndexedDB: A Database EngineinaBrowser........................ 340
CHAPTER1: Running Offline................ 355
Caching Files witha Manifest. 356
Practical Caching Techniques 366

v CONTENTS

www.it-ebooks.info

(c) ketabton.com: The Digital Library

CHAPTER 12:

CHAPTER 13:

Communicating with the Web Server.................. .. 375
Sending Messages tothe Web Server 376
Server-Sent Events. 386
Web Sockets ... oo 393

GeOoloCatioN . .o 402
Webh WOrKerS. ..o 414
History Management 425
Part Four: Appendixes
APPENDIX A: Essential CSS 435
Adding StylestoaWeb Page. 435
The Anatomy of a StyleSheet i 436
Slightly More Advanced Style Sheets. 440
A Style Sheet ToUrt 445
APPENDIX B: JavaScript: The Brains of YourPage 451
How a Web Page Uses JavaScript. 452
A Few Language Essentials i 459
Interacting withthePage i 470
Index. 477
CONTENTS

www.it-ebooks.info

(c) ketabton.com: The Digital Library

www.it-ebooks.info

(c) ketabton.com: The Digital Library

The Missing Credits

ABOUT THE AUTHOR

Matthew MacDonald is a science and technology writer with well
over a dozen books to his name. Web novices can tiptoe out onto
the Internet with him in Creating a Website: The Missing Manual.
Office geeks can crunch the numbers in Excel 2013: The Missing
Manual. And human beings of all description can discover just
how strange they really are in the quirky handbooks Your Brain:
The Missing Manual and Your Body: The Missing Manual.

ABOUT THE CREATIVE TEAM

Nan Barber (editor) has been working on the Missing Manual series since its incep-
tion. She lives in Massachusetts with her husband and various Apple and Android
devices. Email: nanbarber@oreilly.com.

Kristen Brown (production editor) is a graduate of the publishing program at Emer-
son College. She lives in the Boston area with her husband and their large collection
of books and board games. Email: kristen@oreilly.com.

Kara Ebrahim (conversion) lives, works, and plays in Cambridge, MA. She loves
graphic design and all things outdoors. Email: kebrahim@oreilly.com.

Julie Van Keuren (proofreader) quit her newspaper job in 2006 to move to Montana
and live the freelancing dream. She and her husband (who is living the novel-writing
dream) have two sons. Email: /ittle_media@yahoo.com.

Julie Hawks (indexer) is a teacher and eternal student. She can be found wandering
about with a camera in hand. Email: juliehawks@gmail.com.

Shelley Powers (technical reviewer) is a former HTML5 working group member and
author of several O’Reilly books. Website: http://burningbird.net.

Darrell Heath (technical reviewer) is a freelance web/print designer and web de-
veloper from Newfoundland and Labrador, Canada, with a background in Informa-
tion Technology and visual arts. He has authored weekly tutorial content for NAPP,
Layers magazine, and Planet Photoshop, and in his spare time offers design- and
technology-related tips through his blog at www.heathrowe.com/blog. Email:
darrell@heathrowe.com.

THE MISSING CREDITS

www.it-ebooks.info

Vil

(c) ketabton.com: The Digital Library

ACKNOWLEDGEMENTS

No author could complete a book without a small army of helpful individuals.
I’'m deeply indebted to the whole Missing Manual team, especially my editor Nan
Barber, who never seemed fazed by the shifting sands of HTML5; and expert tech
reviewers Shelley Powers and Darrell Heath, who helped spot rogue errors and
offered consistently good advice. And, as always, I'm also deeply indebted to
numerous others who’ve toiled behind the scenes indexing pages, drawing figures,
and proofreading the final copy.

Finally, for the parts of my life that exist outside this book, I'd like to thank all my
family members. They include my parents, Nora and Paul; my extended parents,
Razia and Hamid; my wife, Faria; and my daughters, Maya, Brenna, and Aisha.
Thanks, everyone!

—Matthew MacDonald

THE MISSING MANUAL SERIES

Missing Manuals are witty, superbly written guides to computer products that don’t
come with printed manuals (which is just about all of them). Each book features
a handcrafted index; cross-references to specific pages (not just chapters); and
RepKover, a detached-spine binding that lets the book lie perfectly flat without the
assistance of weights or cinder blocks.

Recent and upcoming titles include:

Access 2013: The Missing Manual by Matthew MacDonald

Adobe Edge Animate: The Missing Manual by Chris Grover

Buying a Home: The Missing Manual by Nancy Conner

Creating a Website: The Missing Manual, Third Edition by Matthew MacDonald
CSS3: The Missing Manual, Third Edition by David Sawyer McFarland

David Pogue’s Digital Photography: The Missing Manual by David Pogue
Dreamweaver CS6: The Missing Manual by David Sawyer McFarland
Dreamweaver CC: The Missing Manual by David Sawyer McFarland and Chris Grover
Excel 2013: The Missing Manual by Matthew MacDonald

FileMaker Pro 12: The Missing Manual by Susan Prosser and Stuart Gripman
Flash CS6: The Missing Manual by Chris Grover

Galaxy Tab: The Missing Manual by Preston Gralla

Google+: The Missing Manual by Kevin Purdy

iMovie ’11 & IDVD: The Missing Manual by David Pogue and Aaron Miller

iPad: The Missing Manual, Sixth Edition by J.D. Biersdorfer

Vil

THE MISSING CREDITS

www.it-ebooks.info

(c) ketabton.com: The Digital Library

iPhone: The Missing Manual, Fifth Edition by David Pogue

iPhone App Development: The Missing Manual by Craig Hockenberry

iPhoto '11: The Missing Manual by David Pogue and Lesa Snider

iPod: The Missing Manual, Eleventh Edition by J.D. Biersdorfer and David Pogue
JavaScript & jQuery: The Missing Manual, Second Edition by David Sawyer McFarland
Kindle Fire HD: The Missing Manual by Peter Meyers

Living Green: The Missing Manual by Nancy Conner

Microsoft Project 2013: The Missing Manual by Bonnie Biafore

Motorola Xoom: The Missing Manual by Preston Gralla

Netbooks: The Missing Manual by J.D. Biersdorfer

NOOK HD: The Missing Manual by Preston Gralla

Office 2011 for Macintosh: The Missing Manual by Chris Grover

Office 2013: The Missing Manual by Nancy Conner and Matthew MacDonald

OS X Mountain Lion: The Missing Manual by David Pogue

OS X Mavericks: The Missing Manual by David Pogue

Personal Investing: The Missing Manual by Bonnie Biafore

Photoshop CS6: The Missing Manual by Lesa Snider

Photoshop CC: The Missing Manual by Lesa Snider

Photoshop Elements 12: The Missing Manual by Barbara Brundage

PHP & MySQL: The Missing Manual, Second Edition by Brett McLaughlin
QuickBooks 2013: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Mountain Lion Edition by David Pogue
Switching to the Mac: The Missing Manual, Mavericks Edition by David Pogue
Windows 8.1: The Missing Manual by David Pogue

WordPress: The Missing Manual by Matthew MacDonald

Your Body: The Missing Manual by Matthew MacDonald

Your Brain: The Missing Manual by Matthew MacDonald

Your Money: The Missing Manual by J.D. Roth

For a full list of all Missing Manuals in print, go to www.missingmanuals.com/library.
html.

THE MISSING CREDITS

www.it-ebooks.info

(c) ketabton.com: The Digital Library

www.it-ebooks.info

(c) ketabton.com: The Digital Library

Introduction

t first glance, you might assume that HTMLS5 is the fifth version of the HTML
web page-writing language. But the real story is a whole lot messier.

HTML5 is a rebel. It was dreamt up by a loose group of freethinkers who
weren’t in charge of the official HTML standard. It allows page-writing practices
that were banned a decade ago. It spends thousands of words painstakingly tell-
ing browser makers how to deal with markup mistakes, rather than rejecting them
outright. It finally makes video playback possible without a browser plug-in like
Flash. And it introduces an avalanche of JavaScript-fueled features that can give
web pages some of the rich, interactive capabilities of traditional desktop software.

Understanding HTML5 is no small feat. One stumbling block is that people use the
word HTML5 to refer to a dozen or more separate standards. (As you’ll learn, this
problem is the result of HTML5’s evolution. It began as a single standard and was later
broken into more manageable pieces.) In fact, HTML5 has come to mean “HTML5
and all its related standards” or, even more broadly, “the next generation of web-
page-writing technologies.” That’s the version of HTML5 that you’ll explore in this
book: everything from the HTML5 core language to a few new features lumped in
with HTML5 even though they were never a part of the standard.

The second challenge of HTMLS5 is browser support. Different browsers support
HTMLS5 to different degrees. The most notable laggard is Internet Explorer 8, which
supports very little HTML5 and is still found on one out of every 20 web-surfing
computers. (At least it was at the time of this writing. Page 30 explains how you can
get the latest browser usage statistics.) Fortunately, there are workarounds that can
bridge the browser support gaps—some easy, and some ugly. In this book, you'll
learn a bit of both on your quest to use HTML5 in your web pages today.

www.it-ebooks.info

Xl

WHAT YOU
NEED TO GET Despite the challenges HTML5 presents, there’s one fact that no one disputes— HTML5
STARTED is the future. Huge software companies like Apple, Google, and Microsoft have lent
it support, and the W3C (World Wide Web Consortium) has given up its work on
XHTML to formalize and endorse it. With this book, you too can join the party and
use HTMLS5 to create cool pages like the one shown in Figure I-1.

__ = FIGURE I-1
/[Comos MozeGame x __| In the dark old days of
&« — C 9 Mazehtml = the Web, you had to build

your web page games
with a browser plug-in
like Flash. But with
HIMLS’s features, includ-
ing the canvas (shown
here), you can use trusty,
plug-in-free JavaScript.
Here, HTML5 powers a
maze game that you’ll
dissect in Chapter 9.

Load Hard Maze| |Load Easy Maze

B What You Need to Get Started

This book covers HTML5, the latest and greatest version of the HTML standard. And
while you don’t need to be a markup master to read it, you do need some previous
web design experience. Here’s the official rundown:

X1 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

WHAT YOU
* Web page writing. This book assumes you’ve written at least a few web pages NEED TO GET

before (or at the very least, you understand how to use HTML elements to struc- STARTED

ture content into headings, paragraphs, and lists). If you’re new to web design,
you’re better off with a gentler introduction, like my own Creating a Website:
The Missing Manual, Third Edition. (But don’t worry; you won’t be trapped in
the past, as all the examples in the third edition of Creating a Website are valid
HTML5 documents.)

» Style sheet experience. No modern website is possible without CSS—the
Cascading Style Sheet standard—which supplies the layout and formatting for
web pages. To follow along in this book, you should know the basics of style
sheets: how to create them, what goes inside, and how to attach one to a page.
If you're a bit hazy on the subject, you can catch up in Appendix A, “Essential
CSS.” But if you need more help, or if you just want to sharpen your CSS skills to
make truly cool layouts and styles, check out a supplementary book like CSS3:
The Missing Manual by David Sawyer McFarland.

« JavaScript experience. No, you don’t need JavaScript to create an HTML5
page. However, you do need JavaScript if you want to use many of HTML5’s
most powerful features, like drawing on a canvas or talking to a web server. If
you have a smattering of programming experience but don’t know much about
JavaScript, then Appendix B, “JavaScript: The Brains of Your Page” can help you
get up to speed. But if the idea of writing code sounds about as comfortable as
crawling into bed with an escaped python, then you’ll either end up skipping
a lot of material in this book, or you’ll need to fill in the gaps with a book like
JavaScript & jQuery: The Missing Manual by David Sawyer McFarland.

Writing HTMLS

You can write HTML5 pages using the same software you use to write HTML pages.
That can be as simple as a lowly text editor, like Notepad (on Windows) or TextEdit
(on Mac). Many current design tools, like Adobe Dreamweaver and Microsoft Visual
Studio, have templates that let you quickly create new HTML5 documents. However,
the basic structure of an HTML5 page is so simple that you can use any web editor
to create one, even if it wasn’t specifically designed for HTMLS5.

NOTE And, of course, it doesn’t matter whether you do your surfing and web page creation on a Windows
PCor the latest MacBook Pro—HTML5 pays no attention to what operating system you use.

Viewing HTML5

You’ll get support for most HTML5 features in the latest version of any modern
browser, including the mobile browsers than run on Apple and Android devices. As
long as your browser is up to date, HTML5 will perform beautifully—and you’ll be
able to try out the examples in this book.

INTRODUCTION X1

www.it-ebooks.info

al Library

WHEN WILL
HTMLS BE Currently, no browser supports every last detail of HTML5, in part because HTML5

READY? is really a collection of interrelated standards. Google Chrome generally leads the

browser race in HTML5 support, with Firefox and Opera in close pursuit. Safari lags
the pack a bit, and Internet Explorer trails still further behind. The real problem lies
in the old copies of Internet Explorer that can’t be updated because they’re run-
ning on creaky operating systems like Windows Vista or Windows XP (which is still
chugging away on a fifth of the world’s desktop computers). Page 26 has a closer
look at this problem and some advice on how to deal with it.

M When Will HTMLS Be Ready?

The short answer is “now.” Even the despised Internet Explorer 6, which is 10 years
old and chock-full of website-breaking quirks, can display basic HTML5 documents.
That’s because the HTML5 standard was intentionally created in a way that embraces
and extends traditional HTML.

The more detailed answer is “it depends.” As you’ve already learned, HTML5 is a
collection of different standards with different degrees of browser support. So al-
though every web developer can switch over to HTML5 documents today (and many
big sites, like Google, YouTube, and Wikipedia, already have), it may be some time
before it’s safe to use all of HTML5’s fancy new features—at least without adding
some sort of fallback mechanism for less-enlightened browsers.

Before encouraging you to use a new HTML5 feature, this book clearly indicates that feature’s current
level of browser support. Of course, browser versions change relatively quickly, so you’ll want to perform your
own up-to-date research before you embrace any feature that might cause problems. The website http;//caniuse.com
lets you look up specific features and tells you exactly which browser versions support them. (You'll learn more
about this useful tool on page 27.)

As a standards-minded developer, you also might be interested in knowing how far
the various standards are in their journey toward official status. This is complicated
by the fact that the people who dreamt up HTML5 have a slightly subversive phi-
losophy, and they often point out that what browsers support is more important
than what the official standard says. In other words, you can go ahead and use
everything that you want right now, if you can get it to work. But web developers,
big companies, governments, and other organizations often take their cues about
whether a language is ready to use by looking at the status of its standard.

At this writing, the HTML5 language is in the candidate recommendation stage,
which means the standard is largely settled but browser makers are still polishing
up their HTML5 implementations. The next and final stage is for the standard to
become a full recommendation, and HTML5 is expected to hit that landmark in late
2014. In the meantime, the W3C has already published a working draft of the next
version of the standard, which it calls HTML 5.1. (For more help making sense of all
the different versions, see the box on the next page.)

X1V HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

FREQUENTLY ASKED QUESTION

ABOUT THE
OUTLINE

Is there another new version of HTML? And what’s with the
inconsistent spacing?

As you’ll learn in Chapter 1, HTML5 has gone through two sets
of hands. This process has left a few quirks behind, including
a slightly schizophrenic versioning system.

The people who originally created HTML5—the members of
WHATWG, which you’ll meet on page 5—aren’t much inter-
ested in version numbers. They consider HTML5 to be a living
language. They encourage web developers to pay attention
to browser support, rather than worry about exact version
numbers.

The Difference Between HTML5 and HTML 5.1

wanted a way to separate their initial publication of the HTML5
standard from the slightly tweaked and cleaned up successors
that were sure to follow. Thus, the W3C decided to name the
first release of the HTML5 standard HTML 5.0 (note the space).
The second release will be HTML5.1, followed by a third release
called HTML5.2. Confusingly enough, all these versions are still
considered to be HTML5.

Incidentally, the later iterations of the HTML5 standard aren’t
likely to add major changes. Instead, new features will turn
up in separate, complementary specifications. This way, small
groups of people can quickly develop new, useful HTML5

features without needing to wait for an entirely new revision

However, the WHATWG passed HTML5 to the official web
of the language.

standard-keepers—the W3(—so they could finalize it. The W3(
is a more careful, methodical organization. The folks there

B About the Outline

This book crams a comprehensive HTML5 tutorial into 13 chapters. Here’s what
you’ll find:

Part One: Meet the New Language

» Chapter 1 explains how HTML turned into HTML5. You’ll meet your first HTML5
document, see how the language has changed, and take a look at browser
support.

» Chapter 2 tackles HTML5’s semantic elements—a group of elements that can
inject meaning into your markup. Used properly, this extra information can help
browsers, screen readers, web design tools, and search engines work smarter.

» Chapter 3 goes deeper into the world of semantics with add-on standards like
microdata. And while it may seem a bit theoretical, there’s a fat prize for the
web developers who understand it best: better, more detailed listings in search
engines like Google.

* Chapter 4 explores HTML5’s changes to the web form elements—the text
boxes, lists, checkboxes, and other widgets that you use to collect information
from your visitors. HTML5 adds a few frills and some basic tools for catching
data-entry errors.

INTRODUCTION XV

www.it-ebooks.info

ABOUT THE
OUTLINE

al Library

Part Two: Video, Graphics, and Glitz

Chapter 5 hits one of HTML5’s most exciting features: its support for audio and
video playback. You’'ll learn how to survive Web Video Codec Wars to create
playback pages that work in every browser, and you’ll even see how to create
your own customized player.

Chapter 6 introduces the latest version of the CSS3 standard, which comple-
ments HTMLS5 nicely. You'll learn how to jazz up your text with fancy fonts and
add eye-catching effects with transitions and animation.

Chapter 7 explores CSS3 media queries. You’ll learn how to use them to create
responsive designs—website layouts that seamlessly adapt themselves to dif-
ferent mobile devices.

Chapter 8 introduces the two-dimensional drawing surface called the canvas.
You’'ll learn how to paint it with shapes, pictures, and text, and even build a basic
drawing program (with a healthy dose of JavaScript code).

Chapter 9 pumps up your canvas skills. You'll learn about shadows and fancy
patterns, along with more ambitious canvas techniques like clickable, interac-
tive shapes and animation.

Part Three: Building Web Apps

Chapter 10 covers the web storage feature that lets you store small bits of infor-
mation on the visitor’s computer. You’'ll also learn about ways to process a user-
selected file in your web page JavaScript code, rather than on the web server.

Chapter 11 explores the HTML5 caching feature that can let a browser keep
running a web page, even if it loses the web connection.

Chapter 12 dips into the challenging world of web server communication. You'll
start with the time-honored XMLHt tpRequest object, which lets your JavaScript
code contact the web server and ask for information. Then you’ll move on to
two newer features: server-side events and the more ambitious web sockets.

Chapter 13 covers three miscellaneous features that address challenges in
modern web applications. First, you’ll see how geolocation can pin down a
visitor’s position. Next, you’ll use web workers to run time-consuming tasks in
the background. Finally, you’ll learn about the browser history feature, which
lets you sync up the web page URL to the current state of the page.

There are also two appendixes that can help you catch up with the fundamentals
you need to master HTML5. Appendix A, “Essential CSS,” gives a stripped-down
summary of CSS; Appendix B, “JavaScript: The Brains of Your Page” gives a concise
overview of JavaScript.

XVI

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

ABOUT THE

B About the Online Resources REZgIl-JIgCIZEES

As the owner of a Missing Manual, you’ve got more than just a book to read. Online,
you’ll find example files as well as tips, articles, and maybe even a video or two.
You can also communicate with the Missing Manual team and tell us what you love
(or hate) about the book. Head over to www.missingmanuals.com, or go directly to
one of the following sections.

The Missing CD

This book doesn’t have a CD pasted inside the back cover, but you’re not missing
out on anything. Go to http./missingmanuals.com/cds/html5tmmZ2e to download
the web page examples discussed and demonstrated in this book. And so you don’t
wear down your fingers typing long web addresses, the Missing CD page offers a
list of clickable links to the websites mentioned in each chapter.

TIP gt you’re looking for a specific example, here’s a quick way to find it: Look at the corresponding figure in

this book. The file name is usually visible at the end of the text in the web browser’s address box. For example, if
you see the file path ¢ \HTML5\Chapter01\SuperSimpleHTML5. htm/ (Figure 1-1), you’ll know that the corresponding
example file is SuperSimpleHTML5.html.

The Try-Out Site

There’s another way to use the examples: on the example site at www.prosetech.com/
html5. There you’ll find live versions of every example from this book, which you can
runin your browser. This convenience just might save you a few headaches, because
HTMLS5 includes several features that require the involvement of a real web server.
(If you’re running web pages from the hard drive on your personal computer, these
features may develop mysterious quirks or stop working altogether.) By using the
live site, you can see how an example is supposed to work before you download the
page and start experimenting on your own.

NOTE

warn you.

Don’t worry—when you come across an HTML5 feature that needs web server hosting, this book will

Registration

If you register this book at oreilly.com (www.oreilly.com), you’ll be eligible for special
offers—like discounts on future editions of HTML5: The Missing Manual. Registering
takes only a few clicks. Type http://tinyurl.com/registerbook into your browser to
hop directly to the Registration page.

INTRODUCTION XVII

www.it-ebooks.info

SAFARI® BOOKS
ONLINE

Feedback

Got questions? Need more information? Fancy yourself a book reviewer? On our
Feedback page, you can get expert answers to questions that come to you while
reading, share your thoughts on this Missing Manual, and find groups of folks who
share your interest in creating their own sites.

To have your say, go to www.missingmanuals.com/feedback.

Errata

To keep this book as up to date and accurate as possible, each time we print more
copies, we’'ll make any confirmed corrections you suggest. We also note such changes
on the book’s website, so you can mark important corrections into your own copy
of the book, if you like. Go to http://tinyurl.com/html52e-mm to report an error and
view existing corrections.

I Safari® Books Online

Safari® Books Online is an on-demand digital library that lets you search over 7,500
technology books and videos.

With a subscription, you can read any page and watch any video from our library.
Access new titles before they’re available in print. Copy and paste code samples,
organize your favorites, download chapters, bookmark key sections, create notes,
print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

XVII

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

Modern Markup

CHAPTER 1:
Introducing HTML5

CHAPTER 2:
Structuring Pages with Semantic Elements

CHAPTER 3:
Writing More Meaningful Markup

CHAPTER 4:
Building Better Web Forms

www.it-ebooks.info

| Library

www.it-ebooks.info

(c) ketabton.com: The Digital Library

CHAPTER

1

Introducing HTML5

f HTML were a movie, HTML5 would be its surprise twist. HTML wasn’t meant to

survive into the 21st century. The official web standards organization, the W3C

(short for World Wide Web Consortium), left HTML for dead way back in 1998.
The W3C pinned its future plans on a specification called XHTML, which it intended
to be HTML’s cleaned-up, modernized successor. But XHTML stumbled, and a group
of disenfranchised rebels resuscitated HTML, laying the groundwork for the features
that you’ll explore in this book.

In this chapter, you’ll get the scoop on why HTML died and how it came back to life.
You'll learn about HTML5’s philosophy and features, and you’ll consider the thorny
issue of browser support. You'll also get your first look at an authentic HTML5
document.

M The Story of HTML5

The basic idea behind HTML—that you use elementsto structure your content—hasn’t
changed since the Web'’s earliest days. In fact, even the oldest web pages still work
perfectly in the most modern web browsers.

Being old and successful also carries some risks—namely, that everyone wants to
replace you. In 1998, the W3C stopped working on HTML and attempted to improve
it with an XML-powered successor called XHTML 1.0.

www.it-ebooks.info

THE STORY OF
HTMLS

XHTML 1.0: Getting Strict

XHTML has most of the same syntax conventions as HTML, but it enforces stricter
rules. Much of the sloppy markup that traditional HTML permitted just isn’t accept-
able in XHTML.

For example, suppose you want to italicize the last word in a heading, like so:
<h1>The Life of a <i>Duck</i></h1>

And you accidentally swap the final two tags:
<h1>The Life of a <i>Duck</h1></i>

When a browser encounters this slightly messed-up markup, it can figure out what
you really want. It italicizes the last word without even a polite complaint. However,
the mismatched tags break XHTMLU’s official rules. If you plug your page into an
XHTML validator (or use a web design tool like Dreamweaver), you’ll get a warning
that points out your mistake. From a web design point of view, XHTML’s strictness
is helpful in that it lets you catch minor mistakes that might cause inconsistent
results on different browsers (or might cause bigger problems when you edit and
enhance the page).

At first, XHTML was a success story. Professional web developers, frustrated with
browser quirks and the anything-goes state of web design, flocked to XHTML.
Along the way, they were forced to adopt better habits and give up a few of HTML’s
half-baked formatting features. However, many of XHTML's imagined benefits—like
interoperability with XML tools, easier page processing for automated programs,
portability to mobile platforms, and extensibility of the XHTML language itself—never
came to pass.

Still, XHTML became the standard for most serious web designers. And while every-
one seemed pretty happy, there was one dirty secret: Although browsers understood
XHTML markup, they didn’t enforce the strict error-checking that the standard
required. That means a page could break the rules of XHTML, and the browsers
wouldn’t blink twice. In fact, there was nothing to stop a web developer from throw-
ing together a mess of sloppy markup and old-fashioned HTML content and calling
itan XHTML page. There wasn’t a single browser on the planet that would complain.
And that made the people in charge of the XHTML standard deeply uncomfortable.

XHTML 2: The Unexpected Failure

XHTML 2 was supposed to provide a solution to this sloppiness. It was set to tighten
up the error-handling rules, forcing browsers to reject invalid XHTML 2 pages.
XHTML 2 also threw out many of the quirks and conventions that originated with
HTML. For example, the system of numbered headings (<h1>, <h2>, <h3>, and so
on) was superseded by a new <h> element, whose significance depended on its
position in a web page. Similarly, the <a> element was eclipsed by a feature that let
web developers transform any element into a link, and the element lost its
alt attribute in favor of a new way to supply alternate content.

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

These changes were typical of XHTML 2. In theory, they made for cleaner, more THE STORY OF
logical markup. In practice, the changes forced web designers to alter the way they HTMLS
wrote web pages (to say nothing of updating the web pages they already had), and

added no new features to make all that work worthwhile. XHTML 2 even dumped a

few well-worn elements that some web designers still loved, like for bold text,

<i> for italics, and <iframe> for embedding one web page inside another.

But perhaps the worst problem was the glacial pace of change. Development on
XHTML 2 dragged on for five years, and developer enthusiasm slowly leaked away.

HTMLS5: Back from the Dead

At about the same time—starting in 2004—a group of people started looking at
the future of the Web from a different angle. Instead of trying to sort out what was
wrong (or just “philosophically impure”) in HTML, they focused on what was missing,
in terms of the things web developers wanted to get done.

After all, HTML began its life as a tool for displaying documents. With the addition
of JavaScript, it had morphed into a system for developing web applications, like
search engines, ecommerce stores, mapping tools, email clients, and a whole lot
more. And while a crafty web application can do a lot of impressive things, it isn’t
easy to create one. Most web apps rely on a soup of handwritten JavaScript, one or
more popular JavaScript toolkits, and a code module that runs on the web server.
It’s a challenge to get all these pieces to interact consistently on different browsers.
Even when you get it to work, you need to mind the duct tape and staples that hold
everything together.

The people creating browsers were particularly concerned about this situation. So
a group of forward-thinking individuals from Opera Software (the creators of the
Opera browser) and the Mozilla Foundation (the creators of Firefox) lobbied to get
XHTML to introduce more developer-oriented features. When they failed, Opera,
Mozilla, and Apple formed the loosely knit WHATWG (Web Hypertext Application
Technology Working Group) to think of new solutions.

The WHATWG wasn’t out to replace HTML, but to extend it in a seamless, backward-
compatible way. The earliest version of its work had two add-on specifications called
Web Applications 1.0 and Web Forms 2.0. Eventually, these standards evolved into
HTMLS.

NOTE The number 5 in the HTMLS specification name is supposed to indicate that the standard picks up
where HTML left off (that’s HTML version 4.01, which predates XHTML). Of course, this isn’t really accurate, because
HTML5 supports everything that’s happened to web pages in the decade since HTML 4.01 was released, including
strict XHTML-style syntax (if you choose to use it) and a slew of JavaScript innovations. However, the name still
makes a clear point: HTML5 may support the conventions of XHTML, but it enforces the rules of HTML.

By 2007, the WHATWG camp had captured the attention of web developers every-
where. After some painful reflection, the W3C decided to disband the group that
was working on XHTML 2 and work on formalizing the HTML5 standard instead. At

CHAPTER 1: INTRODUCING HTML5 5

www.it-ebooks.info

al Library

THE STORY OF
HTML5

this point, the original HTML5 was broken into more manageable pieces, and many
of the features that had originally been called HTML5 became separate standards

(for more, see the box on this page).

TIP

You can read the official W3C version of the HTMLS standard at www.w3.0rg/TR/html5.

UP TO SPEED

What Does HTML5 Include?

HTMLS is really a web of interrelated standards. This approach is
both good and bad. It’s good because the browsers can quickly
implement mature features while others continue to evolve.
It’s bad because it forces web page writers to worry about
checking whether a browser supports each feature they want
to use. You'll learn some painful and not-so-painful techniques
for doing so in this book.

Here are the major feature categories that fall under the
umbrella of HTML5:

+ Core HTMLS. This part of HTML5 makes up the official W3C
version of the specification. It includes the new semantic
elements (Chapter 2 and Chapter 3), new and enhanced
web form widgets (Chapter 4), audio and video support
(Chapter 5), and the canvas for drawing with JavaScript
(Chapter 8 and Chapter 9).

+ Features that were once HTMLS. These features sprang
from the original HTML5 specification as prepared by the

WHATWG. Most of these are specifications for features that
require JavaScript and support rich web applications. The
most significant include local data storage (Chapter 10),
offline applications (Chapter 11), and messaging (Chapter 12),
but you’ll learn about several more in this book.

+ Features that are sometimes called HTMLS. These are
next-generation features that are often lumped together
with HTML5, even though they weren’t ever a part of the
HTML5 standard. This category includes (SS3 (Chapter 6
and Chapter 7) and geolocation (Chapter 13).

Even the W3C is blurring the boundaries between the “real”
HTML5 (what’s actually in the standard) and the “marketing”
version (which includes everything that’s part of HTML5 and
many complementary specifications). For example, the official
W3C logo website (www.w3.0rg/html/logo) encourages you
to generate HTML5 logos that promote (SS3 and SVG—two
standards that were under development well before HTMLS
appeared.

HTML: The Living Language

The switch from the W3C to the WHATWG and back to the W3C again has led to a
rather unusual arrangement. Technically, the W3C is in charge of determining what
is and isn’t official HTMLS. But at the same time, the WHATWG continues its work
dreaming up future HTML features. Only now, they no longer refer to their work
as HTMLS5. They simply call it HTML, explaining that HTML will continue as a living
language.

Because HTML is a living language, an HTML page will never become obsolete and
stop working. HTML pages will never use a version number (even in the doctype),
and web developers will never need to “upgrade” their markup from one version to
another to get it to work on new browsers. By the same token, new features may
be added to HTML at any time.

6 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THREE KEY
When web developers hear about this plan, their first reaction is usually unmitigated PRINCIPLES OF

horror. After all, who wants to deal with a world of wildly variable standards sup- HTMLS

port, where developers need to pick and choose the features they use based on the
likelihood that these features will be supported? However, on reflection, most web
developers come to a grudging realization: For better or for worse, this is exactly
the way browsers have worked since the dawn of the Web.

As explained earlier, today’s browsers are happy with any mishmash of supported
features. You can take a state-of-the-art XHTML page and add something as scandal-
ously backward as the <marquee> element (an obsolete feature for creating scrolling
text), and no browser will complain. Similarly, browsers have well-known holes in
their support for even the oldest standards. For example, browser makers started
implementing CSS3 before CSS2 support was finished, and many CSS2 features were
later dropped. The only difference is that now HTML5 makes the “living language”
status official. Still, it’s no small irony that just as HTML is embarking on a new, in-
novative chapter, it has finally returned full circle to its roots.

TIP To see the current, evolving draft of HTML that includes the stuff called HTML5 and a small but ever-
evolving set of new, unsupported features, go to hitp://whatwg.org/html.

I Three Key Principles of HTML5

By this point, you're probably eager to get going with a real HTML5 page. But first,
it’s worth climbing into the minds of the people who built HTML5. Once you under-
stand the philosophy behind the language, the quirks, complexities, and occasional
headaches that you’ll encounter in this book will make a whole lot more sense.

1. Don’t Break the Web

“Don’t break the Web” means that a standard shouldn’t introduce changes that
make other people’s web pages stop working. Fortunately, this kind of wreckage
rarely happens.

“Don’t break the Web” also means that a standard shouldn’t casually change the
rules, and in the process make perfectly good current-day web pages to be obsolete
(even if they still happen to work). For example, XHTML 2 broke the Web because
it demanded an immediate, dramatic shift in the way web pages were written. Yes,
old pages would still work—thanks to the backward compatibility that’s built into
browsers. But if you wanted to prepare for the future and keep your website up
to date, you'd be forced to waste countless hours correcting the “mistakes” that
XHTML 2 had banned.

HTMLS5 has a different viewpoint. Everything that was valid before HTML5 remains
valid in HTML5. In fact, everything that was valid in HTML 4.01 also remains valid
in HTMLS5.

CHAPTER 1: INTRODUCING HTML5 7

www.it-ebooks.info

al Library

THREE KEY
PRINCIPLES OF
HTML5

NOTE Unlike previous standards, HTML5 doesn’t just tell browser makers what to support—it also documents
and formalizes the way they already work. Because the HTML5 standard documents reality, rather than just setting

out a bunch of ideal rules, it may become the best-supported web standard ever.

UP TO SPEED

Because HTML5 supports all of HTML, it supports many fea-
tures that are considered obsolete. These include formatting
elements like , despised special-effect elements
like <blink> and <marquee>, and the awkward system
of HTML frames.

This open-mindedness is a point of confusion for many HTML5
apprentices. On the one hand, HTML5 should by all rights ban
these outdated elements, which haven’t appeared in an official
specification for years (if ever). On the other hand, modern
browsers still quietly support these elements, and HTML5 is
supposed to reflect how web browsers really work. So what’s
a standard to do?

To solve this problem, the HTMLS specification has two sepa-
rate parts. The first part—which is what you’ll consider in this
book—targets web developers. Developers need to avoid the
bad habits and discarded elements of the past. You can make
sure you’re following this part of the HTML5 standard by using
an HTML5 validator.

The second, much longer part of the HTML5 specification targets
browser makers. Browsers need to support everything that’s

How HTML5 Handles Obsolete Elements

ever existed in HTML, for backward compatibility. Ideally, the
HTMLS standard should have enough information that someone
could build a browser from scratch and make it completely
compatible with the modern browsers of today, whether it
was processing new or old markup. This part of the standard
tells browsers how to deal with obsolete elements that are
officially discouraged but still supported.

Incidentally, the HTML5 specification also formalizes how
browsers should deal with a variety of errors (for example,
missing or mismatched tags). This point is important, because
it ensures that a flawed page will work the same on different
browsers, even when it comes to subtle issues like the way
a page is modeled in the DOM (that’s the Document Object
Model, the tree of in-memory objects that represents the
page and is made available to JavaScript code). To create
this long, tedious part of the standard, the creators of HTML5
performed exhaustive tests on modern browsers to figure
out their undocumented error-handling behavior. Then, they
wrote it down.

2. Pave the Cowpaths

A cowpath is the rough, heavily trodden track that gets people from one point to
another. A cowpath exists because it’s being used. It might not be the best possible
way to move around, but at some point it was the most practical working solution.

HTML5 standardizes these unofficial (but widely used) techniques. It may not be as
neat as laying down a nicely paved expressway with a brand-new approach, but it
has a better chance of succeeding. That’s because switching over to new techniques
may be beyond the ability or interest of the average website designer. And worse,
new technigues may not work for visitors who are using older browsers. XHTML 2
tried to drive people off the cowpaths, and it failed miserably.

8 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THREE KEY
PRINCIPLES OF
Paving the cowpaths has an obvious benefit: It uses established techniques that already have some HTML5

level of browser support. If you give web developers a choice between a beautifully designed new feature that
works on 70 percent of the web browsers out there and a messy hack that works everywhere, they’ll choose the
messy hack and the bigger audience every time.

The “pave the cowpaths” approach also requires some compromises. Sometimes it
means embracing a widely supported but poorly designed feature. One example is
HTML5’s drag-and-drop ability (page 337), which is based entirely on the behavior
Microsoft created for IE 5. Although this drag-and-drop feature is now supported in
all browsers, it’s universally loathed for being clumsy and overly complicated. This
magnanimousness has led some web designers to complain that “HTML5 not only
encourages bad behavior, it defines it.”

3. Be Practical

This principle is simple: Changes should have a practical purpose. And the more
demanding the change, the bigger the payoff needs to be. Web developers may
prefer nicely designed, consistent, quirk-free standards, but that isn’t a good enough
reason to change a language that’s already been used to create several billion pages.
Of course, it’s still up to someone to decide whose concerns are the most important.
A good clue is to look at what web pages are already doing—or trying to do.

For example, the world’s third most popular website (at the time of this writing)
is YouTube. But because HTML had no real video features before HTML5, YouTube
has had to rely on the Flash browser plug-in. This solution works surprisingly well
because the Flash plug-in is present on virtually all web-connected computers.
However, there are occasional exceptions, like locked-down corporate computers
that don’t allow Flash, or mobile devices that don’t support it (like the iPhone, iPad,
and Kindle). And no matter how many computers have Flash, there’s a good case for
extending the HTML standard so it directly supports one of the most fundamental
ways people use web pages today—to watch video.

There’s a similar motivation behind HTML5’s drive to add more interactive features—
drag-and-drop support, editable HTML content, two-dimensional drawing on a
canvas, and so on. You don’t need to look far to find web pages that use all of these
features right now, some with plug-ins like Adobe Flash and Microsoft Silverlight, and
others with JavaScript libraries or (more laboriously) with pages of custom-written
JavaScript code. So why not add official support to the HTML standard and make sure
these features work consistently on all browsers? That’s what HTML5 sets out to do.

NOTE Browser plug-ins like Flash won’t go away overnight. Despite its many innovations, it still takes
far more work to build complex, graphical applications in HTML5. But HTML5’s ultimate vision is clear: to allow
websites to offer video, rich interactivity, and piles of frills without requiring a plug-in.

CHAPTER 1: INTRODUCING HTML5 9

www.it-ebooks.info

al Library

YOUR FIRST
LOOK AT
HTML5 MARKUP

M Your First Look at HTML5 Markup

Here’s one of the simplest HTML5 documents you can create:

<IDOCTYPE html>
<title>A Tiny HTML Document</title>
<p>Let's rock the browser, HTML5 style.</p>

It starts with the HTML5 doctype (a special code that’s explained on page 11), fol-
lowed by a title, and then followed by some content. In this case, the content is a
single paragraph of text.

You already know what this looks like in a browser, but if you need reassuring, check
out Figure 1-1.

BEECSA == %) FiGURE 11
J [] A Tiny HTML Document | + T This super-simple HTML5 document holds a single line of
€)9 | /Chapter01/supersimpleHTMLs html - € ||t || I3 text.

Let's rock the browser, HTMLS style.

You can pare down this document a bit more. For example, the HTML5 standard
doesn’t really require the final </p> tag, since browsers know to close all open ele-
ments at the end of the document (and the HTML5 standard makes this behavior
official). However, shortcuts like these create confusing markup and can lead to
unexpected mistakes.

The HTML5 standard also lets you omit the <title> element if the title information
is provided in another way. For example, if you’re sending an HTML document in an
email message, you could put the title in the title of the email message and put the
rest of the markup—the doctype and the content—into the body of the message.
But this is obviously a specialized scenario.

More commonly, you’ll want to flesh out this bare-bones HTML5 document. Most web
developers agree that using the traditional <head> and <body> sections can prevent
confusion, by cleanly separating the information about your page (the head) and its
actual content (the body). This structure is particularly useful when you start adding
scripts, style sheets, and meta elements.

10 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

YOUR FIRST

<IDOCTYPE html> LOOK AT
<head> HTML5 MARKUP

<title>A Tiny HTML Document</title>
</head>
<body>

<p>Let's rock the browser, HTML5 style.</p>
</body>

As always, the indenting (at the beginning of lines three and six) is purely optional.
This example uses it to make the structure of the page easier to see at first glance.

Finally, you can choose to wrap the entire document (not including the doctype) in
the traditional <html> element. Here’s what that looks like:

<IDOCTYPE html>
<html>
<head>
<title>A Tiny HTML Document</title>
</head>
<body>
<p>Let's rock the browser, HTML5 style.</p>
</body>
</html>

Up until HTMLS5, every version of the official HTML specification had demanded
that you use the <html> element, despite the fact that it has no effect on browsers.
However, HTML5 makes this detail completely optional.

The use of the <html>, <head>, and <body> elements is simply a matter of style. You can leave
them out and your page will work perfectly well, even on old browsers that don’t know a thing about HTML5. In
fact, the browser will automatically assume these details. So if you use JavaScript to peek at the DOM (the set of
programming objects that represents your page), you'll find objects for the <html>, <head>, and <body>
elements, even if you didn’t add them yourself.

Currently, this example is somewhere between the simplest possible HTML5 docu-
ment and the fleshed-out starting point of a practical HTML5 web page. In the fol-
lowing sections, you’ll fill in the rest of what you need and dig a little deeper into
the markup.

The HTMLS5 Doctype

The first line of every HTML5 document is a special code called the doctype. The
doctype clearly indicates the standard that was used to write the document markup
that follows. Here’s how a page announces that it adheres to the HTML5 standard:

<IDOCTYPE html>

CHAPTER 1: INTRODUCING HTML5 1

www.it-ebooks.info

YOUR FIRST
LOOK AT
HTMLS MARKUP

The first thing you’ll notice about the HTML5 doctype is its striking simplicity.
Compare it, for example, to the ungainly doctype that web developers need when
using XHTML 1.0 strict:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Even professional web developers were forced to copy and paste the XHTML doctype
from one document to another. But the HTML5 doctype is short and snappy, so you
won’t have much trouble typing it by hand.

The HTML5 doctype is also notable for the fact that it doesn’t include the official
specification version (that’s the 5in HTML5). Instead, the doctype simply indicates
that the page is HTML, which is in keeping with the new vision of HTML5 as a living
language (page 6). When new features are added to the HTML language, they’re
automatically available in your page, without requiring you to edit the doctype.

All of this raises a good question—if HTML5 is a living language, why does your web
page require any doctype at all?

The answer is that the doctype remains for historical reasons. Without a doctype,
most browsers (including Internet Explorer and Firefox) will lapse into quirks mode.
In this mode, they’ll attempt to render pages according to the slightly buggy rules
that they used in older versions. The problem is that one browser’s quirks mode dif-
fers from the next, so pages designed for one browser are likely to get inconsistently
sized fonts, scrambled layouts, and other glitches on another browser.

When you add a doctype, the browser recognizes that you want to use the stricter
standards mode, which ensures that the web page is displayed with consistent
formatting and layout on every modern browser. The browser doesn’t even care
which doctype you use (with just a few exceptions). Instead, it simply checks that
you have some doctype. The HTML5 doctype is simply the shortest valid doctype,
so it always triggers standards mode.

TIP The HTMLS doctype triggers standards mode on all browsers that have a standards mode, including
browsers that don’t know anything about HTMLS. For that reason, you can use the HTML5 doctype now, in all your
pages, even if you need to hold off on some of HTML5’s less-supported features.

Although the doctype is primarily intended to tell web browsers what to do, other
agents canalso check it. This includes HTML5 validators, search engines, design tools,
and other human beings when they’re trying to figure out what flavor of markup
you’ve chosen for your page.

Character Encoding

The character encoding is the standard that tells a computer how to convert your
text into a sequence of bytes when it’s stored in a file—and how to convert it back
again when the file is opened. For historical reasons, there are many different char-
acter encodings in the world. Today, virtually all English websites use an encoding

12

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

YOUR FIRST
LOOK AT
HTML5 MARKUP

called UTF-8, which is compact, fast, and supports all the non-English characters
you’ll ever need.

Often, the web server that hosts your pages is configured to tell browsers that it’s
serving out pages with a certain kind of encoding. However, because you can’t be
sure that your web server will take this step (unless you own the server), and be-
cause browsers can run into an obscure security issue when they attempt to guess
a page’s encoding, you should always add encoding information to your markup.

HTML5 makes that easy to do. All you need to do is add the <meta> element shown
below at the very beginning of your <head> section (or right after the doctype, if
you don’t define the <head> element):

<head>

<meta charset="utf-8">

<title>A Tiny HTML Document</title>
</head>

Design tools like Dreamweaver add this detail automatically when you create a new
page. They also make sure that your files are being saved with UTF encoding. How-
ever, if you're using an ordinary text editor, you may need to take an extra step to
make sure your files are being saved correctly. For example, when editing an HTML
file in Notepad (on Windows), in the Save As dialog box, you must choose UTF-8
from the Encoding list (at bottom). In TextEdit (on Mac), in the Save As dialog box,
you need to first choose Format—>Make Plain Text to make sure the program saves
your page as an ordinary text file, and then choose “Unicode (UTF-8)” from the
Plain Text Encoding pop-up menu.

The Language

It’s considered good style to indicate your web page’s natural language. This informa-
tion is occasionally useful to other people—for example, search engines can use it to
filter search results so they include only pages that match the searcher’s language.

To specify the language of some content, you use the lang attribute on any element,
along with the appropriate language code. That’s en for plain English, but you can
find more exotic language codes at http.//tinyurl.com/I-codes.

The easiest way to add language information to your web page is to use the <html>
element with the lang attribute:

<html lang="en">

This detail can also help screen readers if a page has text from multiple languages. In
this situation, you use the lang attribute to indicate the language of different sections
of your document; for example, by applying it to different <div> elements that wrap
different content. Screen readers can then determine which sections to read aloud.

CHAPTER 1: INTRODUCING HTML5 13

www.it-ebooks.info

al Library

YOUR FIRST
LOOK AT Adding a Style Sheet

HTML5 MARKUP

Virtually every web page in a properly designed, professional website uses CSS style
sheets. You specify the style sheets you want to use by adding <1ink> elements to
the <head> section of an HTML5 document, like this:

<head>

<meta charset="utf-8">

<title>A Tiny HTML Document</title>

<link href="styles.css" rel="stylesheet">
</head>

This method is more or less the same way you attach style sheets to a traditional
HTML document, but slightly simpler.

Because (SS is the only style sheet language around, there’s no need to add the type="text/
css" attribute that web pages used to require.

Adding JavaScript

JavaScript started its life as a way to add frivolous glitter and glamour to web pages.
Today, JavaScript is less about user interface frills and more about novel web ap-
plications, including super-advanced email clients, word processors, and mapping
engines that run right in the browser.

You add JavaScript to an HTML5 page in much the same way that you add it to
a traditional HTML page. Here’s an example that references an external file with
JavaScript code:

<head>
<meta charset="utf-8">
<title>A Tiny HTML Document</title>
<script src="scripts.js"></script>
</head>

There’s no need to include the language="JavaScript" attribute. The browser as-
sumes you want JavaScript unless you specify otherwise—and because JavaScript
is the only HTML scripting language with broad support, you never will. However,
you do still need to remember the closing </script> tag, even when referring to an
external JavaScript file. If you leave it out or attempt to shorten your markup using
the empty element syntax, your page won’t work.

If you spend a lot of time testing your JavaScript-powered pages in Internet Explorer,
you may also want to add a special comment called the mark of the Web to your
<head> section, right after the character encoding. It looks like this:

14 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

YOUR FIRST
<head> LOOK AT
<meta charset="utf-8"> HTML5 MARKUP

<!-- saved from url=(0014)about:internet -->
<title>A Tiny HTML Document</title>
<script src="scripts.js"></script>

</head>

This comment tells Internet Explorer to treat the page as though it has been down-
loaded from a remote website. Otherwise, IE switches into a special locked-down
mode, pops up a security warning in a message bar, and won’t run any JavaScript
code until you explicitly click “Allow blocked content.”

All other browsers ignore the “mark of the Web” comment and use the same security
settings for remote websites and local files.

The Final Product

If you’ve followed these steps, you’ll have an HTML5 document that looks something
like this:

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>A Tiny HTML Document</title>
<link href="styles.css" rel="stylesheet">
<script src="scripts.js"></script>
</head>

<body>

<p>Let's rock the browser, HTML5 style.</p>
</body>
</html>

Although it’s no longer the shortest possible HTML5 document, it’s a reasonable
starting point for any web page you want to build. And while this example seems
wildly dull, don’t worry—in the next chapter, you’ll step up to a real-life page that’s
full of carefully laid-out content, and all wrapped up in CSS.

NOTE the HTML5 syntax you’ve learned about in this section—the new doctype, the meta element for
character encoding, the language information, and the style sheet and JavaScript references, work in browsers
both new and old. That’s because they rely on defaults and built-in error-correcting practices that all browsers
use.

CHAPTER 1: INTRODUCING HTML5 15

www.it-ebooks.info

al Library

A CLOSER
LOOK AT
HTMLS SYNTAX

M A Closer Look at HTMLS5 Syntax

As you’ve already learned, HTMLS5 loosens some of the rules. That’s because the
creators of HTML5 wanted the language to more closely reflect web browser real-
ity—in other words, they wanted to narrow the gap between “web pages that work”
and “web pages that are considered valid, according to the standard.” In the next
section, you’ll take a closer look at how the rules have changed.

NOTE There are still plenty of obsolete practices that browsers support but that the HTML5 standard strictly
discourages. For help catching these in your own web pages, you’ll need an HTML5 validator (page 17).

The Loosened Rules

In your first walk through an HTML5 document, you discovered that HTML5 makes
the <html>, <head>, and <body> elements optional (although they can still be pretty
useful). But HTML5’s relaxed attitude doesn’t stop there.

HTML5 ignores capitalization, letting you write markup like the following:
<P>Capital and lowercase letters don't matter in tag names.</p>.

HTMLS5 also lets you omit the closing slash from a vo/d e/emeni—that’s an element
with no nested content, like an (image), a
 (line break), or an <hr> (hori-
zontal line). Here are three equivalent ways to add a line break:

I cannot

move backward

or forward.

I am caught

HTMLS5 also changes the rules for attributes. Attribute values don’t need quotation
marks anymore, as long as the value doesn’t include a restricted character (typi-
cally >, =, or a space). Here’s an example of an element that takes advantage
of this ability:

Attributes with no values are also allowed. So while XHTML required the somewhat
redundant syntax to put a checkbox in the checked state...

<input type="checkbox" checked="checked" />

...you can now revive the shorter HTML 4.01tradition of including the attribute name
on its own.

<input type="checkbox" checked>

What’s particularly disturbing to some peopleisn’t the fact that HTML5 allows these
things. It’s the fact that inconsistent developers can casually switch back and forth
between the stricter and the looser styles, even using both in the same document.
In reality, though, XHTML permitted the same kind of inconsistency. In both cases,

16 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

A CLOSER
good style is the responsibility of the web designer, and the browser tolerates LOOK AT

whatever you can throw at it. HTMLS SYNTAX

Here’s a quick summary of what constitutes good HTML5 style—and what conven-
tions the examples in this book follow, even if they don’t have to:

¢ Including the optional <html>, <body>, and <head> elements. The <html>
element is a handy place to define the page’s natural language (page 13); and
the <body> and <head> elements help to keep page content separate from the
other page details.

+ Using lowercase tags (like <p> instead of <P>). They’re not necessary, but
they’re far more common, easier to type (because you don’t need the Shift
key), and not nearly as shouty.

» Using quotation marks around attribute values. The quotation marks are
there for a reason—to protect you from mistakes that are all too easy to make.
Without quotation marks, one invalid character can break your whole page.

On the other hand, there are some old conventions that this book ignores (and you
can, too). The examples in this book don’t close empty elements, because most
developers don’t bother to add the extra slash (/) when they switch to HTMLS5.
Similarly, there’s no reason to favor the long attribute form when the attribute name
and the attribute value are the same.

HTMLS Validation

HTML5’s new, relaxed style may suit you fine. Or, the very thought that there could
be inconsistent, error-ridden markup hiding behind a perfectly happy browser may
be enough to keep you up at night. If you fall into the latter camp, you'll be happy
to know that a validation tool can hunt down markup that doesn’t conform to the
recommended standards of HTML5, even if it doesn’t faze a browser.

Here are some potential problems that a validator can catch:
* Missing mandatory elements (for example, the <title> element)
* A start tag without a matching end tag
* Incorrectly nested tags

+ Tags with missing attributes (for example, an element without the src
attribute)

* Elements or content in the wrong place (for example, text that’s placed directly
in the <head> section)

Web design tools like Dreamweaver often have their own validators. But if you don’t
want the cost or complexity of a professional web editor, you can get the same
information from an online validation tool. Here’s how to use the popular validator
provided by the W3C standards organization:

CHAPTER 1: INTRODUCING HTML5 17

www.it-ebooks.info

al Library

A CLOSER
LOOK AT
HTML5 SYNTAX

1. In your web browser, go to http://validator.w3.org (Figure 1-2).

The W3C validator gives you three choices, represented by three separate tabs:
“Validate by URI” (for a page that’s already online), “Validate by File Upload”
(for a page that’s stored in a file on your computer), and “Validate by Direct
Input” (for a bunch of markup you type in yourself).

2. Click the tab you want, and supply your HTML content.

» Validate by URI lets you validate an existing web page. You just need to
type the page’s URL in the Address box (for example, http://www.MySlop-
pySite.com/FlawedPage.html).

» Validate by File Upload lets you upload any file from your computer. First,
click the Browse button (in Chrome, click Choose File). In the Open dialog
box, select your HTML file and then click Open.

» Validate by Direct Input lets you validate any markup—you just need to
type it into a large box. The easiest way to use this option is to copy the
markup from your text editor and paste it into the box on the W3C valida-

tion page.
| = ==& FIGURE 1-2
/I8 The W3€ Markup Validati... | .) .
e Cl © oo org/valitate by iout = vl A The website http://valida-

tor.w3.0rg gives you three
options for validating
HTML. You can fill in the
R ——— T — address of another web
page, you can upload a
file of your own, or you
can type the markup in
Validate by direct input directly (shown here).

Enter the Markup to validate:
<!DOCTYFE html> -
<html lang="en">»
<head>
<meta charset="uti-8">
<link href="styles.css” rel="styleshest"> =
<script src="scripts.js"></script>
</head>

Wscm Markup Validation Service

validate by URI Validate by File Upload Validate by Direct Jnput

m

<body>

<p>Be careful not to overlap nearby nested elements, or else!</p> N
</body>
</html > r

» More Options

§ Check)

validatorw3.org/#validate_by input -

Before continuing, you can click More Options to change some settings, but
you probably won't. It’s best to let the validator automatically detect the docu-
ment type—that way, the validator will use the doctype specified in your web
page. Similarly, use automatic detection for the character set unless you have

18 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

A CLOSER
an HTML page that’s written in another language and the validator has trouble LOOK AT

determining the correct character set. HTMLS SYNTAX

3. Click the Check button.

This click sends your HTML page to the W3C validator. After a brief delay, the
report appears. You'll see whether your document passed the validation check
and, if it failed, what errors the validator detected (see Figure 1-3).

NOTE Even in a perfectly valid HTML document, you may get a few harmless warnings, including that the
character encoding was determined automatically and that the HTML5 validation service is considered to be an
experimental, not-fully-finished feature.

S— S (=[O] .
/" Ml tinwvalid] Markup Validati.., \?;7 FIGU.RE 1-3 '
€« C | @ validator.w3.org/check = v A The validator ha; dISCIOV-
ered four errors in this
Validation Output: 4 Errors document that stem from
two mistakes. First, the
@ Line 7, Column 7- Element head is missing a required instance of child element title. page is missing the man-

datory <title> element.

</nead > i
Second, it closes the <p>
Content model for element neaa: .
If the document is an i freme sredec document or if title information is available from a higher-lavel element before closing the
rotocol- Zero or more elements of metadata content.)
herwise: One or more elements of metadata content, of which exactly one is a title element. <str0ng> element that’s

nested inside. (To solve
this problem, you would
@ Line 10, Column 75 End tag p seen, but there were open elements. replace </p></5trong>

= .
.Be careful not to overlap nearby nested elements, or else!</p> Wlth</5trong></p>')
Incidentally, this document
Is still close enough to being

@ Line 10, Column 63 Unclosed element strong. correct that all browsers will
= display it properly.

-Be careful not to overlap nearby nested elements, <strong®or else!</p>

m

& Line 10, Column 84: No element strong to close.
=
-Be careful not to overlap nearby nested elements, or else!</p></strong?

The Return of XHTML

As you’ve already learned, HTMLS5 spells the end for the previous king of the Web—
XHTML. However, reality isn’t quite that simple, and XHTML fans don’t need to give
up all the things they loved about the past generation of markup languages.

First, remember that XHTML syntax lives on. The rules that XHTML enforced either
remain as guidelines (for example, nesting elements correctly) or are still supported
as optional conventions (for example, including the trailing slash on empty elements).

CHAPTER 1: INTRODUCING HTML5 19

www.it-ebooks.info

A CLOSER
LOOK AT
HTMLS SYNTAX

But what if you want to enforce the XHTML syntax rules? Maybe you’re worried that
you (or the people you work with) will inadvertently slip into the looser conven-
tions of ordinary HTML. To stop that from happening, you need to use XHTML5—a
less common standard that is essentially HTML5 with the XML-based restrictions
slapped on top.

To turn an HTML5 document into an XHTML5 document, you need to explicitly add
the XHTML namespace to the <html> element, close every element, make sure you use
lowercase tags, and so on. Here’s an example of a web page that takes all these steps:

<IDOCTYPE html>
<html lang="en" xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta charset="utf-8"/>
<title>A Tiny HTML Document</title>
<link href="styles.css" rel="stylesheet"/>
<script src="scripts.js"></script>
</head>

<body>

<p>Let's rock the browser, XHTML5 style.</p>
</body>
</html>

Now you can use an XHTML5 validator to get stricter error checking that enforces
the old-style XHTML rules. The standard W3C validator won’t do it, but the valida-
tor at http://validator.w3.org/nu will, provided you click the Options button and
choose XHTMLS5 from the Preset list. You also need to choose the “Be lax about
content-type” option, unless you’re using the direct input approach and pasting
your markup into a text box.

By following these steps, you can create and validate an XHTML document. However,
browsers will still process your page as an HTML5 document—one that just happens
to have an XML inferiority complex. They won’t attempt to apply any extra rules.

If you want to go XHTML5 all the way, you need to configure your web server to
serve your page with the MIME type application/xhtml+xml or application/xml,
instead of the standard text/html. (See page 152 for the lowdown on MIME types.)
But before you call your web hosting company, be warned that this change will
prevent your page from being displayed by any version of Internet Explorer before
IE 9. For that reason, true XHTML5 is an immediate deal-breaker in the browser.

Incidentally, browsers that do support XHTML5 deal with it differently from ordinary
HTML5. They attempt to process the page as an XML document, and if that process
fails (because you've left a mistake behind), the browser gives up on the rest of
the document.

Bottom line? For the vast majority of web developers, from ordinary people to serious
pros, XHTML5 isn’t worth the hassle. The only exceptions are developers who have a

20

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

HTML5’S
specific XML-related goal in mind; for example, developers who want to manipulate ELEMENT

the content in their pages with XML-related standards like XQuery and XPath. FAMILY

TIP you’re curious, you can trick your browser into switching into XHTML mode. Just rename your file so
that it ends with .xhtml or .xht. Then open it from your hard drive. Most browsers (including Firefox, Chrome, and
IE 9 or later) will act as though you downloaded the page from a web server with an XML MIME type. If there’s
aminor error in the page, the browser window will show a partially processed page (IE), an XML error message
(Firefox), or a combination of the two (Chrome).

M HTML5’s Element Family

So far, this chapter has focused on the changes to HTML5’s syntax. But more im-
portant are the additions, subtractions, and changes to the elements that HTML
supports. In the following sections, you’ll get an overview of how they’ve changed.

Added Elements

In the following chapters, you’ll spend most of your time learning about new ele-
ments—ingredients that haven’t existed in web pages up until now. Table 1-1 has a
preview of what’s in store (and where you can read more about it).

TABLE 1-1 New HTML5 elements

CATEGORY ELEMENTS DISCUSSED IN...
Semantic elements for <article>, <aside>, Chapter 2
structuring a page <figcaption>, <figure>,

<footer>, <header>, <nav>,
<section>, <details>,
<summary>

Semantic elements for text <mark>, <time>, <wbr> Chapter 3
(previously supported, but
now an official part of the
language)

Web forms and interactivity | <input> (not new, but Chapter 4
has many new subtypes)
<datalist>, <keygen>,
<meter>, <progress>,
<command>, <menu>, <output>

Audio, video, and plug-ins <audio>, <video>, <source>, | Chapter5
<embed> (previously
supported, but now an
official part of the language)

Canvas <canvas> Chapter 8
Non-English language <bdo>, <rp>, <rt>, <ruby> HTMLS specification at
support http://dev.w3.org/html5/
markup
CHAPTER 1: INTRODUCING HTMLS5 21

www.it-ebooks.info

al Library

HTML5’S
ELEMENT Removed Elements

FAMILY

Although HTML5 adds new elements, it also boots a few out of the official family.
These elements will keep working in browsers, but any decent HTMLS5 validator will
smoke them out of their hiding places and complain loudly.

Most obviously, HTML5 keeps the philosophy (first cooked up with XHTML) that
presentational elements are not welcome in the language. Presentational elements
are elements that are simply there to add formatting to web pages, and even the
greenest web designer knows that’s a job for style sheets. Rejects include elements
that professional developers haven’t use in years (like <big>, <center>, , <tt>,
and <strike>). HTMLs presentational attributes died the same death, so there’s no
reason to rehash them all here.

Additionally, HTMLS5 kicks more sand on the grave where web developers buried
the HTML frames feature. When it was first created, HTML frames seemed like a
great way to show multiple web pages in a single browser window. But now, frames
are better known as an accessibility nightmare because they cause problems with
search engines, assistive software, and mobile devices. Interestingly, the <iframe>
element—which lets developers put one page inside another—squeaks through.
That’s because web applications use the <iframe> for a range of integration tasks,
like incorporating YouTube windows, ads, and Google search boxes in a web page.

A few more elements were kicked out because they were redundant or the cause of
common mistakes, including <acronym> (use <abbr> instead) and <applet> (because
<object> is preferred). But the vast majority of the element family lives on in HTML5.

NOTE For those keeping count, HTMLS includes a family of just over 100 elements. Out of these, almost 30

are new and about 10 are significantly changed. You can browse the list of elements (and review which ones are
new or changed) at http://dev.w3.org/html5/markup.

Adapted Elements

HTML5 has another odd trick: Sometimes it adapts an old feature to a new purpose.
For example, consider the <small> element, which fell out of favor as a clumsy
way to shrink the font size of a block of text—a task more properly done with style
sheets. But unlike the discarded <big> element, HTML5 keeps the <small> element,
with a change. Now, the <small> element represents “small print”—for example, the
legalese that no one wants you to read at the bottom of a contract:

<small>The creators of this site will not be held liable for any injuries that
may result from unsupervised unicycle racing.</small>

Text inside the <small> element is still displayed as it always was, using a smaller
font size, unless you override that setting with a style sheet.

22 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

HTMLS5’S

ELEMENT
Opinions on this <small> technique differ. On the one hand, it’s great for backward compatibility, FAMILY

because old browsers already support the <small> element, and so they’ll continue to support it in an HTMLS
page. On the other hand, it introduces a potentially confusing change of meaning for old pages. They may be
using the <small> element for presentational purposes, without wanting to suggest “small print.”

NOTE

Another changed element is <hr> (short for horizontal rule), which draws a separating
line between sections. In HTMLS5, <hr> represents a thematic break—for example,
a transition to another topic. The default formatting stays, but now a new meaning
applies.

Similarly, <s> (for struck text), isn’t just about crossing out words anymore—it now
represents text that is no longer accurate or relevant, and has been “struck” from
the document. Both of these changes are subtler than the <small> element’s shiftin
meaning, because they capture ways that the <hr> and <s> elements are commonly
used in traditional HTML.

Il BOLD AND ITALIC FORMATTING

The most important adapted elements are the ones for bold and italic formatting.
Two of HTML's most commonly used elements—that’s for bold and <i> for ital-
ics—were partially replaced when the first version of XHTML introduced the look-
alike and elements. The idea was to stop looking at things from a
formatting point of view (bold and italics), and instead substitute elements that had
a real logical meaning (strong importance or stressed emphasis). The idea made
a fair bit of sense, but the and <i> tags lived on as shorter and more familiar
alternatives to the XHTML fix.

HTMLS5 takes another crack at solving the problem. Rather than trying to force
developers away from and <i>, it assigns new meaning to both elements. The
idea is to allow all four elements to coexist in a respectable HTML5 document. The
result is the somewhat confusing set of guidelines listed here:

+ Use for text that has strong importance. This is text that needs to
stand out from its surroundings.

* Use for text that should be presented in bold but doesn’t have greater
importance than the rest of your text. This could include keywords, product
names, and anything else that would be bold in print.

* Use for text that has emphatic stress—in other words, text that would
have a different inflection if read out loud.

» Use <i> for text that should be presented in italics but doesn’t have extra em-
phasis. This could include foreign words, technical terms, and anything else that
you’d set in italics in print.

CHAPTER 1: INTRODUCING HTML5 23

www.it-ebooks.info

al Library

HTMLS5’S
ELEMENT And here’s a snippet of markup that uses all four of these elements in the appropri-

FAMILY

ate way:

Breaking news! There's a sale on <i>leche quemada</i> candy
at the El Azul restaurant. Don't delay, because when the last candy
is gone, it's gone.

In the browser, the text looks like this:

Breaking news! There’s a sale on leche quemada candy at the El Azul restaurant. Don’t delay,
because when the last candy is gone, it’s gone.

Some web developers will follow HTML's well-intentioned rules, while others just
stick with the most familiar elements for bold and italic formatting.

Tweaked Elements

HTMLS5 also shifts the rules of a few elements. Usually, these changes are minor
details that only HTML wonks will notice, but occasionally they have deeper effects.
One example is the rarely used <address> element, which is not suitable (despite the
name) for postal addresses. Instead, the <address> element has the narrow purpose
of providing contact information for the creator of the HTML document, usually as
an email address or website link:

Our website is managed by:

<address>

John Solo,

Lisa Cheng, and
Ryan Pavane.
</address>

The <cite> element has also changed. It can still be used to cite some work (for
example, a story, article, or television show), like this:

<p>Charles Dickens wrote <cite>A Tale of Two Cities</cite>.</p>

However, it’s not acceptable to use <cite> to mark up a person’s name. This restric-
tion has turned out to be surprisingly controversial, because this usage was allowed
before. Several guru-level web developers are on record urging people to disregard
the new <cite> rule, which is a bit odd, because you can spend a lifetime editing
web pages without ever stumbling across the <cite> element in real life.

A more significant tweak affects the <a> element for creating links. Past versions of
HTML have allowed the <a> element to hold clickable text or a clickable image. In
HTMLS5, the <a> element allows anything and everything, which means it’s perfectly
acceptable to stuff entire paragraphs in there, along with lists, images, and so on.
(If you do, you’ll see that all the text inside becomes blue and underlined, and all
the images inside sport blue borders.) Web browsers have supported this behavior
for years, but it’s only HTML5 that makes it an official, albeit not terribly useful, part
of the HTML standard.

24 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

HTMLS5’S
ELEMENT
FAMILY

There are also some tweaks that don’t work yet—in any browser. For example, the
 element (for ordered lists) now gets a reversed attribute, which you can set
to count backward (either toward 1, or toward whatever starting value you set with
the start attribute), but currently there are only two browsers that recognize this
setting—Chrome and Safari.

You'll learn about a few more tweaks as you make your way through this book.

Standardized Elements

HTMLS5 also adds supports for a few elements that were supported but weren’t of-
ficially welcome in the HTML or XHTML language. One of the best-known examples
is <embed>, which is used all over the Web as an all-purpose way to shoehorn a
plug-in into a page.

A more exotic example is <wbr>, which indicates an optional word break—in other
words, a place where the browser can split a line if the word is too long to fit in its
container:

<p>Many linguists remain unconvinced that
supercali<wbr>fragilistic<wbr>expialidocious is indeed a word.</p>

The <wbr> element is useful when you have long names (sometimes seen in program-
ming terminology) in small places, like table cells or tiny boxes. Even if the browser
supports <wbr>, it will break the word only if it doesn’t fit in the available space. In
the previous example, that means the browser may render the word in one of the
following ways:

Many linguists remain

unconvinced that
supercalifragilisticexpialidocious
is indeed a word.

Many linguists remain
unconvinced that
supercalifragilistic
expialidocious is indeed a
word.

Many linguists
remain
unconvinced
that supercali
fragilistic
expialidocious
is indeed a
word.

CHAPTER 1: INTRODUCING HTML5 25

www.it-ebooks.info

al Library

USING HTML5 The <wbr> element has a natural similarity to the <nobr> element, which prevents
TODAY text from wrapping no matter how narrow the available space. However, HTML5
considers <nobr> obsolete and advises all self-respecting web developers to avoid
using it. Instead, you can get the same effect by adding the white-space property

to your style sheet and setting it to nowrap.

M Using HTMLS5 Today

Before you commit to HTML5, you need to know how well it works with the browsers
your visitors are likely to use. After all, the last thing any web developer wants is a
shiny new page that collapses into a muddle of scrambled markup and script errors
when it meets a vintage browser.

In a moment, you’ll learn how to research specific HTML5 features to find out which
browsers support them, and examine browser usage statistics to find out what por-
tion of your audience meets the bar. But before digging into the fine details, here’s
a broad overview of the current state of HTML5 support:

 |f your visitors use the popular Google Chrome or Mozilla Firefox, they’ll be fine.
Not only have both browsers supported the bulk of HTML5 for several years, but
they’re also designed to update themselves automatically. That means you're
unlikely to find an old version of Chrome or Firefox in the wild.

 |f your visitors use Safari or Opera, you’re probably still on safe ground. Once
again, these browsers have had good HTML5 support for several years, and old
versions are rarely seen.

* |f your visitors use tablet computers or smartphones, you may face some
limitations with certain features, as you’ll learn throughout this book. However,
the mobile browsers on all of today’s web-enabled gadgets were created with
HTML5 in mind. That means your pages are in for maybe a few hiccups, not a
horror show.

 |f your visitors use an older version of Internet Explorer—that is, any version
before IE 10—most HTML5 features won’t work. Here’s where the headaches
come in. Old versions of Windows are still common, and they typically include
old versions of Internet Explorer. Even worse, many old versions of Windows
don’t let their users upgrade to a modern, HTML5-capable version of IE. Win-
dows Vista, for example, is limited to IE 9. The mind-bogglingly old (but still
popular) Windows XP is stuck with IE 8.

No, it’s not Microsoft’s diabolical plan to break the Web—it’s just that newer
versions of |E were designed with newer computer hardware in mind. This new
software simply won’t work on old machines. But people with old versions of
Windows can use an alternative browser like Firefox, although they may not
know how to install it or may not be allowed to make such changes to a com-
pany computer.

26 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

USING HTML5
TODAY

Although really old versions of Internet Explorer—like IE 6 and IE 7—have finally disappeared from the
scene, the problematic IE 8 and IE 9 still account for over 10 percent of all Web traffic (at the time of this writing).
And because it’s never OK to force one in ten website visitors to suffer, you’ll need to think about workarounds
for most HTML5 features—at least for the immediate future.

UP TO SPEED

Dealing with Old Browsers

code that checks whether the current browser supports
a feature you want to use (using a tool like Modernizr). If

For the next few years, some of your visitors’ browsers won’t
support all the HTMLS features you want to use. That’s a fact
of life. But it doesn’t need to prevent you from using these the browser fails the test, your code can show different
features, if you’re willing to put in a bit more work. There are content or use a less glamorous approach.

two basic strategies you can use: « Use a JavaScript workaround. Many of HTML5’s new

+ Degrade gracefully. Sometimes, when a feature doesn’t features are inspired by the stuff web developers are
work, it’s not a showstopper. For example, HTML5’s new already doing the hard way. Thus, it should come as no

<video> element has a fallback mechanism that lets
you supply something else to older browsers, like a video
player that uses the Flash plug-in. (Supplying an error
message is somewhat rude, and definitely not an example
of degrading gracefully.) Your page can also degrade
gracefully by ignoring nonessential frills, like some of
the web form features (like placeholder text) and some of
the formatting properties from CSS3 (like rounded corners

surprise that you can duplicate many of HTMLS’s features
using a good JavaScript library (or, in the worst-case
scenario, by writing a whackload of your own custom
JavaScript). Creating JavaScript workarounds can be a
lot of work, but there are hundreds of good (and not-
s0-good) workarounds available free on the Web, which
you can drop into your pages when needed. The more
elaborate ones are called polyfills (page 35).

and drop shadows). Or, you can write your own JavaScript

How to Find the Browser Requirements for Any HTML5
Feature

The people who have the final word on how much HTML5 you use are the browser
vendors. If they don’t support a feature, there’s not much point in attempting to use
it, no matter what the standard says. Today, there are four or five major browsers (not
including the mobile variants that run on web-connected devices like smartphones
and tablets). A single web developer has no chance of testing each prospective
feature on every browser—not to mention evaluating support in older versions that
are still widely used.

Fortunately, there’s an ingenious website named “Can | use” that can help you out.
It details the HTML5 support found in every mainstream browser. Best of all, it lets
you focus on exactly the features you need. Here’s how it works:

1. Point your browser to http://caniuse.com.

The main page has a bunch of links grouped into categories, like CSS, HTML5,
and so on.

CHAPTER 1: INTRODUCING HTML5 27

www.it-ebooks.info

USING HTMLS5 2. Choose the feature you want to study.
TODAY

The quickest way to find a feature is to type its name into the Search box near
the top of the page.

Or, you can browse to the feature by clicking one of the links on the front page.
The HTML5 group has a set of links that are considered part of the core HTML5
standard; the JS APl group has links for JavaScript-powered features that began
as part of HTML5 but have since been split off; the CSS group has links for the
styling features that are part of CSS3; and so on.

TIP T you want, you can view the support tables for every feature in a group, all at once. Click the group
title (like HTML5 or JS API), which is itself a link.

3. Examine your results (Figure 1-4).

Each feature table shows a grid of different browser versions. The tables indicate
support with the color of the cell, which can be red (ho support), bright green
(full support), olive green (partial support), or gray (undetermined, usually
because this version of the browser is still under development and the feature
hasn’t been added yet).

4. Optionally, choose different browsers to put under the microscope.

Ordinarily, the support table includes the most recent versions of the most
popular browsers. However, you can tweak the table so it includes support
information for other browsers that may be important to you—say, the aging
|E 7 or a specialized mobile browser like Firefox for Android.

To choose which browsers appear in the tables, start by clicking the “Show op-
tions” link above the table. A list of browsers appears, and you can choose the
browsers you want by adding a checkmark next to their names. You can also
tweak the “Versions shown” slider, which acts as a kind of popularity thresh-
old—lower it to include older browser versions that are used less frequently.

Alternatively, click the “Show all versions” link in the top-left corner of the
table to see all the browser compatibility information that “Can | use” has in its
database. But be warned that you’ll get an immense table that stretches back
to the dark days of Firefox 2 and IE 5.5.

28 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

USING HTMLS
TODAY

A quick estimate of FIGURE 1-4
how many people have

The version of IE has browsers that support This search for audio finds two
no audio support this feature tables. First is the table that
T describes l?rowser support for
{audio x) the <audio> element (shown
3 results found here).
m - m B F“ M Green-shaded squares indicate
[Compatibiity tables | [firowser comparison | browser versions that have
full audio support, while
= Supported [0 = Not supported | =Partially supported | - indi
= Sharyenane e red-shaded squares indicate

browser versions that do not.

Opera Android
Mini__ Browser

Firefox Chrome Safari Opera

These versions of IE have Some handy links
full audio support with information
about this feature

CHAPTER 1: INTRODUCING HTML5 29

www.it-ebooks.info

al Library

US';‘SDTYML5 How to Find Out Which Browsers Are on the Web

How do you know which browser versions you need to worry about? Browser adop-
tion statistics can tell you what portion of your audience has a browser that supports
the features you plan to use. One good place to get an overall snapshot of all the
browsers on the Web is GlobalStats, a popular tracking site. Here’s how to use it:

1. Browse to http://gs.statcounter.com.

On the GlobalStats site, you’ll see a line graph showing the most popular
browsers during the previous year. However, this chart doesn’t include version
information, so it doesn’t tell you how many people are surfing with problematic
versions of Internet Explorer (versions before IE 10). To get this information, you
need to adjust another setting.

2. Look for the Stat setting (under the chart) and choose “Browser Version
(Partially Combined).”

This choice lets you consider not just which browsers are being used, but which
versions of each browser. The partial combining tells GlobalStats to group to-
gether browsers that are rapidly updated, like Chrome and Firefox (Figure 1-5),
so your chart isn’t cluttered with dozens of extra lines.

3. Optionally, change the geographic region in the Region box.

The standard setting is Worldwide, which shows browser statistics culled from
across the globe. However, you can home in on a specific country (like Bolivia)
or continent (like North America).

StatCounter Global Stats FIGURE 1-5
Top 12 i (ially C ined) from June 2012 to June 2013
o This chart shows that al-
though Chrome’s popular-

s
40% |

s
o
o
<
<
o

ity is soaring, troublesome
browser versions like IE 8
and IE 9 still cling to life.

®:+ Line
OFBar

O@ map

Stat: Browser Version (Partial... v Region: Worldwide v Period: llune 2012 to June 2|13 (edit)

The death of IE 7 But IE 8 and
is fast approaching IE 9 live on

30 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

4. Optionally, click the text next to the Period setting to pick a different date USING HTMLS5
range. TODAY

You’ll usually see the browser usage trends for an entire year, but you can choose
to focus on a smaller range, like the past three months.

5. Optionally, change the chart type using the option buttons that are just to
the right of the chart box.

Choose the Line option to see a line chart that shows the trend in browser
adoption over time. Choose Bar to see a bar chart that shows a snapshot of
the current situation. Or, choose Map to see a color-coded map that shows the
countries where different browsers reign supreme.

GlobalStats compiles its statistics daily using tracking code that’s present on millions
of websites. And while that’s a large number of pages and a huge amount of data,
it’s still just a small fraction of the total Web, which means you can’t necessarily
assume that your website visitors will use the same browsers.

Furthermore, browser-share results change depending on the web surfer’s country
and the type of website. For example, in Germany, Firefox is the top browser with
over 40 percent of web surfers. And on the TechCrunch website (a popular news site
for computer nerds), old versions of Internet Explorer are a rarity. So if you want to
design a website that works for your peeps, it’s worth reviewing the web statistics
generated by your own pages. (And if you aren’t already using a web tracking service
for your site, check out the top-tier and completely free Google Analytics at www.
google.com/analytics.)

Feature Detection with Modernizr

Feature detection is one strategy for dealing with features that aren’t supported by
all the browsers that hit up your site. The typical pattern is this: Your page loads and
runs a snippet of JavaScript code to check whether a specific feature is available.
You can then warn the user (the weakest option), fall back to a slightly less impres-
sive version of your page (better), or implement a workaround that replicates the
HTMLS5 feature you wanted to use (best).

Unfortunately, because HTML5 is, at its heart, a loose collection of related standards,
there’s no single HTML5 support test. Instead, you need dozens of different tests to
check for dozens of different features—and sometimes even to check if a specific
part of a feature is supported, which gets ugly fast.

Checking for support usually involves looking for a property on a programming ob-
ject, or creating an object and trying to use it a certain way. But think twice before
you write this sort of feature-testing code, because it’s so easy to do it badly. For
example, your feature-testing code might fail on certain browsers for some obscure
reason or another, or quickly become out of date. Instead, consider using Modernizr
(http://modernizr.com), a small, constantly updated tool that tests the support of a
wide range of HTML5 and related features. It also has a cool trick for implementing
fallback support when you’re using new CSS3 features, which you’ll see on page 180.

CHAPTER 1: INTRODUCING HTML5 31

www.it-ebooks.info

al Library

USING HTML5 Here’s how to use Modernizr in one of your web pages:
TODAY

1. Visit the Modernizr download page at http://modernizr.com/download.

Look for the “Development version” link, which points to the latest all-in-one
JavaScript file for Modernizr.

2. Right click the “Development version” link and choose “Save link as” or
“Save target as.”

Both commands are the same thing—the wording just depends on the browser
you’re using.

3. Choose a place on your computer to save the file, and click Save.

The JavaScript file has the name modernizr-latest.js, unless you pick something
different.

4. When you’re ready to use Modernizr, place that file in the same folder as
your web page.

Or, place it in a subfolder and modify the path in the JavaScript reference
accordingly.

5. Add areference to the JavaScript file in your web page’s <head> section.

Here’s an example of what your markup might look like, assuming the modernizr-
latest.js file is in the same folder as your web page:

<head>
<meta charset="utf-8">
<title>HTML5 Feature Detection</title>
<script src="modernizr-latest.js"></script>

</head>
Now, when your page loads, the Modernizr script runs. It tests for a couple of
dozen new features in mere milliseconds, and then creates a JavaScript object

called modernizr that contains the results. You can test the properties of this
object to check the browser’s support for a specific feature.

TIP For the full list of features that Modernizr tests, and for the JavaScript code that you need to examine
each one, refer to the documentation at http://modernizr.com/docs.

6. Write some script code that tests for the feature you want and then carries
out the appropriate action.

For example, here’s how you might test whether Modernizr supports the HTML5
drag-and-drop feature, and show the result in the page:

32 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

<IDOCTYPE html> USING HTML5
<html lang="en"> TODAY

<head>
<meta charset="utf-8">
<title>HTML5 Feature Detection</title>
<script src="modernizr-latest.js"></script>
</head>

<body>
<p>The verdict is... </p>

<script>
// Find the element on the page (named result) where you can show
// the results.
var result = document.getElementById("result");
if (Modernizr.draganddrop) {
result.innerHTML = "Rejoice! Your browser supports drag-and-drop.";
}
else {
result.innerHTML = "Your feeble browser doesn't support drag-and-drop.";
}
</script>
</body>

</html>

Figure 1-6 shows the result.

[=@ FiGuRE 1-6
GNE%MMMMMI P-ax| i 7y & Although this example shows the right way to test for features,
(& HTMLS Feature Detection %]_I it shows a less-than-ideal approach for dealing with them.
Instead of telling your website visitor about a missing feature,
The verdict is... Rejoice! Your browser supports drag-and- it’s far, far better to implement some sort of workaround (even
drop. if it’s not as neat or fully featured as the HTML5 equivalent) or

to simply ignore the problem altogether (if the missing feature
is a minor frill that’s not necessary for the visitor to enjoy the
page).

TIP This example uses basic and time-honored JavaScript techniques—Ilooking up an element by ID and
changing its content. If you find it a bit perplexing, you can brush up with the JavaScript review in Appendix B,
“JavaScript: The Brains of Your Page.”

CHAPTER 1: INTRODUCING HTML5 33

www.it-ebooks.info

al Library

USING HTML5 The full Modernizr script is a bit bulky. It’s intended for testing purposes while
TODAY you’re still working on your website. Once you’ve finished development and you’re
ready to go live, you can create a slimmed-down version of the Modernizr script
that tests only for the features you need. To do so, go to the download page at
http://modernizr.com/download. But this time, instead of using the “Development
version” link, peruse the checkboxes below. Click the ones that correspond to the
features you need to detect. Finally, click the Generate button to create your own
custom Modernizr version, and then click the Download button to save it on your

computer (Figure 1-7).

- ol [GuRE 1-7

/"l Modemizr Download Buil x '\ |

You're about to download
a custom build of Modern-
izr that can detect support
for the HTML5 canvas, the

; canvas text feature, and
CSS3 HTMLS Misc. HTML5 video. This build of
epplceronCache st Modernizr won’t be able to

SMIL check for other features.
SVG

SVG clip paths
Touch Evenms
WebGL

« C | [) modemizr.com/download/#-canvas-canvastext-history-audio-shiv-cssclasses-load v =

Use the to develop with and learn from. Then, when you're ready for
production, use the build tool below to pick only the tests you need.

W @font-face

M background-size

M border-image Canvas Text

Drag 'n Drop

W box-shadow hashchange

M Flexible Box Model

(flexbax)

M Flexbox Legacy

W hsla) IndexedDB

W multiple backgrounds Input Attributes

M opacity Nate: does not odd dasses

MW rgbaf Input Types

W textshadow Note: does not odd casses

W CSS Animations

W CSS Columns

W C5S Generated Content
{befores:after)

History (pushState)
HTML5S Audio
HTMLS Video

L B B<0 B 0 0 B<Q<Q |

printshiv
Modernizr load
{)

W Medis Queri
Add CS5 CI

className prefi.

» Extensibility » Non-core detects

% GENERATE!

Q DOWNLOAD “

34 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

Feature “Filling” with Polyfills USING HTML5

Modernizr helps you spot the holes in browser support. It alerts you when a feature TOBAY
won’t work. However, it doesn’t do anything to patch these problems. That’s where

polyfills come in. Basically, polyfills are a hodgepodge collection of techniques for

filling the gaps in HTML5 support on aging browsers. The word polyfillsis borrowed

from the product polyfiller, a compound that’s used to fill in drywall holes before

painting (also known as spackling paste). In HTML5, the ideal polyfill is one you can

drop into a page without any extra work. It takes care of backward compatibility

in a seamless, unobtrusive way, so you can work with pure HTML5 while someone

else worries about the workarounds.

But polyfills aren’t perfect. Some rely on other technologies that may be only partly
supported. For example, one polyfill allows you to emulate the HTML5 canvas on
old versions of Internet Explorer using the Silverlight plug-in. But if the web visitor
isn’t willing or able to install Silverlight, then you need to fall back on something
else. Other polyfills may have fewer features than the real HTML5 feature, or poorer
performance.

Occasionally, this book will point you to a potential polyfill. If you want more in-
formation, you can find the closest thing there is to a comprehensive catalog of
HTMLS5 polyfills on GitHub at http://tinyurl.com/polyfill. But be warned—polyfills
differ greatly in quality, performance, and support.

TIP Remember, it’s not enough to simply know that a polyfill exists for a given HTML5 feature. You must test
it and check how well it works on various old browsers before you risk incorporating the corresponding feature
into your website.

With tools like browser statistics, feature detection, and polyfills, you're ready to
think in depth about integrating HTML5 features into your own web pages. In the
next chapter, you’ll take the first step, with some HTML5 elements that can function
in browsers both new and old.

CHAPTER 1: INTRODUCING HTML5 35

www.it-ebooks.info

(c) ketabton.com: The Digital Library

www.it-ebooks.info

(c) ketabton.com: The Digital Library

CHAPTER

2

Structuring Pages with
Semantic Elements

dramatically. But the greatest surprise isn’t how much the Web has changed,

but how well ancient HTML elements have held up. In fact, web developers
use the same set of elements to build today’s modern sites that they used to build
their predecessors 10 years ago.

O ver the two decades that the Web’s been around, websites have changed

One element in particular—the humble <div> (or division)—is the cornerstone of
nearly every modern web page. Using <div> elements, you can carve an HTML
document into headers, side panels, navigation bars, and more. Add a healthy pinch
of CSS formatting, and you can turn these sections into bordered boxes or shaded
columns, and place each one exactly where it belongs.

This <div>-and-style technique is straightforward, powerful, and flexible, but it’s not
transparent. When you look at someone else’s markup, you have to put some effort
into figuring out what each <div> represents and how the whole page fits together.
To make sense of it all, you need to jump back and forth among the markup, the style
sheet, and the displayed page in the browser. And you’ll face this confusion every
time you crack open anyone else’s halfway-sophisticated page, even though you’re
probably using the same design techniques in your own websites.

This situation got people thinking. What if there was a way to replace <div> with
something better? Something that worked like <div>, but conveyed a bit more
meaning. Something that might help separate the sidebars from the headers and
the ad bars from the menus. HTML5 fulfills this dream with a set of new elements
for structuring pages.

37

www.it-ebooks.info

al Library

INTRODUCING

THE SEMANTIC
ELEMENTS If your CSS skills are so rusty that you need a tetanus shot before you can crack open a style sheet, then

you’re not quite ready for this chapter. Fortunately, Appendix A, “Essential CSS,” has a condensed introduction
that covers the fundamentals.

TIP

M Introducing the Semantic Elements

To improve the structure of your web pages, you need HTML5’s semantic elements.
These elements give extra meaning to the content they enclose. For example, the
new <time> element flags a valid date or time in your web page. Here’s an example
of the <time> element at its very simplest:

Registration begins on <time>2014-11-25</time>.
And this is what someone sees when viewing the page:
Registration begins on 2014-11-25.

The important thing to understand is that the <time> element doesn’t have any
built-in formatting. In fact, the web page reader has no way of knowing that there’s
an extra element wrapping the date. You can add your own formatting to the <time>
element using a style sheet, but by default, the text inside a <time> element is in-
distinguishable from ordinary text.

The <time> element is designed to wrap a single piece of information. However, most
of HTML5’s semantic elements are designed to identify larger sections of content.
For example, the <nav> element identifies a set of navigation links. The <footer>
element wraps the footer that sits at the bottom of a page. And so on, for a dozen
(or so) new elements.

NOTE Although semantic elements are the least showy of HTML5’s new features, they’re one of the largest.
In fact, the majority of the new elements in HTML5 are semantic elements.

All the semantic elements share a distinguishing feature: They don’t really do any-
thing. By contrast, the <video> element, for example, embeds a fully capable video
player in your page (page 147). So why bother using all these new elements that
don’t change the way your web page looks?

There are several good reasons:

» Easier editing and maintenance. It can be difficult to interpret the markup in
a traditional HTML page. To understand the overall layout and the significance
of various sections, you'll often need to scour a web page’s style sheet. But by
using HTML5’s semantic elements, you provide extra structural information in
the markup. That makes your life easier when you need to edit the page months
later, and it’s even more important if someone else needs to revise your work.

38 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

RETROFITTING
» Accessibility. One of the key themes of modern web design is making acces- A TRADITIONAL

sible pages—that is, pages that people can navigate using screen readers and HTML PAGE

other assistive tools. Accessibility tools that understand HTML5 can provide
a far better browsing experience for disabled visitors. (For just one example,
imagine how a screen reader can home in on the <nav> sections to quickly find
the navigation links for a website.)

TIP To learn more about the best practices for web accessibility, you can visit the WAI (Web Accessibility
Initiative) website at www.w3.0rg/WAI Or, to get a quick look at what life is like behind a screen reader (and to
learn why properly arranged headings are so important), check out the YouTube video at http://tinyurl.com/6budpe.

* Search-engine optimization. Search engines like Google use powerful search
bots—automated programs that crawl the Web and fetch every page they can—
to scan your content and index it in their search databases. The better Google
understands your site, the better the chance that it can match a web searcher’s
query to your content, and the better the chance that your website will turn up
in someone’s search results. Search bots already check for some of HTML5’s
semantic elements to glean more information about the pages they’re indexing.

* Future features. New browsers and web editing tools are sure to take advantage
of semantic elements. For example, a browser could provide an outline that lets
visitors jump to the appropriate section in a page. (In fact, Chrome already has
a plug-in that does exactly that—see page 65.) Similarly, web design tools can
include features that let you build or edit navigation menus by managing the
content you’ve placed in the <nav> section.

The bottom line is this: If you can apply the semantic elements correctly, you can
create cleaner, clearer pages that are ready for the next wave of browsers and web
tools. But if your brain is still tied up with the old-fashioned practices of traditional
HTML, the future may pass you by.

I Retrofitting a Traditional HTML Page

The easiest way to introduce yourself to the new semantic elements—and to learn
how to use them to structure a page—is to take a classic HTML document and inject
it with some HTML5 goodness. Figure 2-1shows the first example you'll tackle. It’s a
simple, standalone web page that holds an article, although other types of content
(like a blog posting, a product description, or a short story) would work equally well.

WL You can view or download the example in Figure 2-1from the try-out site at http://prosetech.com/html5,
along with all the examples for this chapter. Start with ApocalypsePage Original.htmlif you'd like to try to remodel
the HTML yourself, or ApocalypsePage Revised.html if you want to jump straight to the HTML5-improved final
product.

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 39

www.it-ebooks.info

al Library

RETROFITTING
A TRADITIONAL
HTML PAGE

Header box First-level heading FIGURE 2-1

— |- Lo S This ordinary HTML page
() ELtrochpnse cnginnt - > X[spsciypeion bl S pasa basic, document-like
structure. A linked style

How the World Could End sheet provides all the
formatting.

] »

Byline

Lead-in RIGHT NOW, you're probably feeling pretty good. After all, life in the
developed world is comfortable—probably more comfortable than it's
been for the average human being throughout all of recorded history.

But don't get too smug. There's still plenty of horrific ways it could all fall
apart. In this article, you'll learn about a few of our favorites.

Second-level Mayan Doomsd

head]ng Skeptics suggest that the Mayan calendar simply rolls to a new 5,126-year
era after 2012, and doesn't actually predict a life-ending apocalypse. But
given that the long-dead Mayans were wrong about virtually everything
else, why should we trust them on this?

(]

Robot Takeover
Not quite as frighteningas a Vampire Takeover or Living-Dead Takeover, a
robot rebellion is still a disquieting thought. We are already outnumbered

nological cadeets and even Bill Gates fears the dav his

Global Epidemic

Some time in the future, a lethal virus could strike. Predictions differ about
the source of the disease, but candidates include monkeys in the African
jungle, bioterrorists, birds and pigs with the flu, warriors from the future,
an alien race, hospitals that use too many antibiotics, vampires, the CIA,
and unwashed brussel sprouts. Whatever the source, it's clearly bad news.

Footer These i o not reflect the views of the author.
About Us Disclaimer Contact Us

Copyright © 2014 =

Page Structure the Old Way

There are a number of ways to format a page like the one shown in Figure 2-1. Hap-
pily, this example uses HTML best practices, which means the markup doesn’t have
a lick of formatting logic. There are no bold or italic elements, no inline styles, and
certainly nothing as hideous as the obsolete element. Instead, it’s a neatly
formatted document that’s bound to an external style sheet.

40 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

RETROFITTING
A TRADITIONAL
HTML PAGE

Here’s a shortened version of the markup, which highlights where the document
plugs into its style sheet:

<div class="Header">
<h1>How the World Could End</h1>
<p class="Teaser">Scenarios that spell the end of life as we know it</p>
<p class="Byline">by Ray N. Carnation</p>
</div>

<div class="Content">
<p>Right now, you're probably ...</p>
<p>...</p>

<h2>Mayan Doomsday</h2>
<p>Skeptics suggest ...</p>

</div>

<div class="Footer">
<p class="Disclaimer">These apocalyptic predictions ...</p>
<p>
About Us

</p>
<p>Copyright © 2014</p>
</div>

UP TO SPEED

What Are These Dots (...)?

This book can’t show you the full markup for every example—at
least not without expanding itself to 12,000 pages and wiping
out an entire old-growth forest. But it can show you basic
structure of a page and all its important elements. To do that,
many of the examples in this book use an ellipsis (a series of
three dots) to show where some content has been left out.

For example, consider the markup shown above on this page.
Itincludes the full body of the page shown in Figure 2-2, but it
leaves out the full text of most paragraphs, most of the article
after the “Mayan Doomsday” heading, and the full list of links
in the footer. But, as you know, you can pore over every detail
by examining the sample files for this chapter on the try-out
site (http://prosetech.com/html5).

In a well-written, traditional HTML page (like this one), most of the work is farmed
out to the style sheet using the <div> and containers. The lets you
format snippets of text inside another element. The <div> allows you to format entire
sections of content, and it establishes the overall structure of the page (Figure 2-2).

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 41

www.it-ebooks.info

RETROFITTING
A TRADITIONAL
HTML PAGE

P (=lB s £GURE 2-2
\\‘ —le £ ApocalypsePage _Original.html O ~ 3 X " @ Apocalypse Now x u {0} 2r 883
- The <div> elements carve

this page into three logical
sections: the header at

the top, the content that
follows, and the footer at
the bottom.

How the World Could End

<div> ——

RIGHT NOW, you're probably feeling pretty good. After all, life in the
developed world is comfortable—probably more comfortable than it's
been for the average human being throughout all of recorded history.

But don't get too smug. There's still plenty of horrific ways it could all fall
apart. In this article, you'll learn about a few of our favorites.

Mayan Doomsday

Skeptics suggest that the Mayan calendar simply rolls to a new 5,126-year
era after 2012, and doesn't actually predict a life-ending apocalypse. But
given that the long-dead Mayans were wrong about virtually everything
else, why should we trust them on this?

<div> —| Robot Takeover
Not quite as frighteningas a Vampire Takeover or Living-Dead Takeover, a
robot rebellion is still a disquieting thought. We are already outnumbered

by our technological gadgets, and even Bill Gates fears the dav his

Global Epidemic

Some time in the future, a lethal virus could strike. Predictions differ about
the source of the disease, but candidates include monkeys in the African
jungle, bioterrorists, birds and pigs with the flu, warriors from the future,
an alien race, hospitals that use too many antibiotics, vampires, the CIA,
and unwashed brussel sprouts. Whatever the source, it's clearly bad news.

These apocalyptic predictions do nat reflect the views of the author.
<div> —| About Us Disclaimer Contact Us
Copyright © 2014 —

Here, the style sheet formatting tasks are simple. The entire page is given a maxi-
mum width (800 pixels) to prevent really long text lines on widescreen monitors.
The header is put in a bordered blue box. The content is padded on either side, and
the footer is centered at the bottom of the page.

Thanks to the <div>, formatting is easy. For example, the ApocalypsePage Original.
css style sheet uses the following rules to format the header box and the content
inside:

/* Format the <div> that represents the header (as a blue, bordered box). */
.Header {

background-color: #7695FE;

border: thin #336699 solid;

padding: 10px;

42 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

RETROFITTING

margin: 10px; A TRADITIONAL
text-align: center; HTML PAGE

}

/* Format any <h1> headings in the header <div> (that's the article title). */
.Header h1 {

margin: opx;

color: white;

font-size: xx-large;

}

/* Format the subtitle in the header <div>. */
.Header .Teaser {

margin: opx;

font-weight: bold;
}

/* Format the byline in the header <div>. */
.Header .Byline {

font-style: italic;

font-size: small;

margin: opx;

}

You’'ll notice that this example makes good use of contextual selectors (page 441). For
example, it uses the selector .Header h1toformatall <h1> elementsinthe header box.

TIP g/ example is also described in the CSS review in Appendix A, “Essential CSS.” If you’d like to take a

detailed walk through the style sheet rules that format each section, flip to page 445.

Page Structure with HTML5

The <div> element is still a staple of web design. It’s a straightforward, all-purpose
container that you can use to apply formatting anywhere you want in a web page.
The limitation of the <div> is that it doesn’t provide any information about the page.
When you (or a browser, or a design tool, or a screen reader, or a search bot) come
across a <div>, you know that you’ve found a separate section of the page, but you
don’t know the purpose of that section.

To improve this situation in HTML5, you can replace some of your <div> elements
with more descriptive semantic elements. The semantic elements behave exactly
like <div> elements: They group a block of markup, they don’t do anything on their
own, and they give you a styling hook that lets you apply formatting. However, they
also give your page a little more semantic smarts.

Here’s a quick revision of the article shown in Figure 2-1. It removes two <div> ele-
ments and adds two semantic elements from HTML5: <header> and <footer>.

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 43

www.it-ebooks.info

al Library

RETROFITTING
A TRADITIONAL <header class="Header">
HTML PAGE <h1>How the World Could End</h1>
<p class="Teaser">Scenarios that spell the end of life as we know it</p>
<p class="Byline">by Ray N. Carnation</p>
</header>

<div class="Content">
<p>Right now, you're probably ...</p>
<p>...</p>

<h2>Mayan Doomsday</h2>
<p>Skeptics suggest ...</p>

</div>
<footer class="Footer">
<p class="Disclaimer">These apocalyptic predictions ...</p>

<p>
About Us

</p>
<p>Copyright © 2014</p>
</footer>

In this example, the <header> and <footer> elements take the place of the <div>
elements that were there before. Web developers who are revising a large website
might start by wrapping the existing <div> elements in the appropriate HTML5
semantic elements.

You’ll also notice that the <header> and <footer> elements in this example still use
the same class names. This way, you don’t need to change the original style sheet.
Thanks to the class names, the style sheet rules that used to format the <div> ele-
ments now format the <header> and <footer> elements.

However, you might feel that the class names seem a bit redundant. If so, you can
leave them out, like this:

<header>
<h1>How the World Could End</h1>
<p class="Teaser">Scenarios that spell the end of life as we know it</p>
<p class="Byline">by Ray N. Carnation</p>

</header>

To make this work, you need to alter your style sheet rules so they apply themselves
by element name. This works for the header and footer, because the current page
has just a single <header> element and a single <footer> element.

44 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

RETROFITTING

Here’s the revised style sheet that applies its formatting to the <header> element: A TRADITIONAL
HTML PAGE
/* Format the <header> (as a blue, bordered box.) */
header {
}
/* Format any <h1> headings in the <header> (that's the article title). */
header h1 {
}

/* Format the subtitle in the <header>. */
header .Teaser {

/* Format the byline in the <header>. */
header .Byline {

}

Both approaches are equally valid. As with many design decisions in HTMLS5, there
are plenty of discussions but no hard rules.

You'll notice that the <div> section for the content remains. This is perfectly ac-
ceptable, as HTML5 web pages often contain a mix of semantic elements and the
more generic <div> containers. Because there’s no HTML5 “content” element, an
ordinary <div> still makes sense.

NOTE Left to its own devices, this web page won’t display correctly on versions of Internet Explorer before
IE 9. To fix this issue, you need the simple workaround discussed on page 51. But first, check out a few more
semantic elements that can enhance your pages.

Finally, there’s one more element worth adding to this example. HTML5 includes an
<article> element that represents a complete, self-contained piece of content, like
a blog posting or a news story. The <article> element includes the whole shebang,
including the title, author byline, and main content. Once you add the <article>
element to the page, you get this structure:

<article>
<header>
<h1>How the World Could End</h1>

</header>

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 45

www.it-ebooks.info

RETROFITTING
A TRADITIONAL
HTML PAGE

<div class="Content">
<p>Right now, you're probably ...</p>
<p>...</p>
<h2>Mayan Doomsday</h2>
<p>Skeptics suggest ...</p>
</div>
</article>

<footer>
<p class="Disclaimer">These apocalyptic predictions ...</p>

</footer>

Figure 2-3 shows the final structure.

After the redesign, the page uses three of HTML5’s semantic elements.

<artidle> If the old structure said, “Here is a page with three sections,” then the
new structure says, “Here is an article with a header, on a page with
[<header>] a footer.”
[<footer>]

Although the web page still looks the same in the browser, there’s a fair bit of extra
information lurking behind the scenes. For example, a search bot that stops by your
site can quickly find your page’s content (that’s your article) and the title of that
content (that’s the header). It won’t pay as much attention to the footer.

NOTE Sometimes articles are split over several web pages. The current consensus of webheads is that
each part of the article should be wrapped in its own <article> element, even though it’s not complete
and self-contained. This messy compromise is just one of many that occur when semantics meet the practical,
presentational considerations of the Web.

Adding a Figure with <figure>

Plenty of pages have images. But the concept of a figureis a bit different. The HTML5
specification suggests that you think of them much like figures in a book—in other
words, a picture that’s separate from the text, yet referred to in the text.

Generally, you let figures float, which means you put them in the nearest convenient
spot alongside your text, rather than lock them in place next to a specific word or
element. Often, figures have captions that float with them.

46

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

The following example shows some HTML markup that adds a figure to the apocalyp-
ticarticle. It also includes the paragraph that immediately precedes the figure and the
one that follows it, so you can see exactly where the figure is placed in the markup.

<p>Right now, you're probably ...</p>
<div class="FloatFigure">

<p>Will you be the last person standing if one of these apocalyptic
scenarios plays out?</p>

</div>

<p>But don't get too smug ...</p>

This markup assumes that you've created a style sheet rule that positions the figure
(and sets margins, controls the formatting of the caption text, and optionally draws
a border around it). Here's an example:

/* Format the floating figure box. */
.FloatFigure {

float: left;

margin-left: opx;

margin-top: Opx;

margin-right: 20px;

margin-bottom: Opx;

/* Format the figure caption text. */
.FloatFigure p {

max-width: 200px;

font-size: small;

font-style: italic;

margin-bottom: 5px;

}
Figure 2-4 shows this example at work.

If you’ve created this sort of figure before, you’ll be interested to know that HTML5
provides new semantic elements that are tailor-made for this pattern. Instead of
using a boring <div> to hold the figure box, you use a <figure> element. And if you
have any caption text, you put that in a <figcaption> element inside the <figure>:

<figure class="FloatFigure">

<figcaption>Will you be the last person standing if one of these
apocalyptic scenarios plays out?</figcaption>

</figure>

RETROFITTING
A TRADITIONAL
HTML PAGE

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS

www.it-ebooks.info

47

RETROFITTING
A TRADITIONAL
HTML PAGE

A~ : o[BS FiGURE 2-4
=)@| &) ApocalypsePage_Revised.html O ~ = X H @ Apocalypse Now x u o e @ Now a fgure graces the
S| article. In the markup, it’s
How the World Could End defined just after the first

RIGHT NOW, you're probably feeling pretty good. After all, life in the developed world
is comfortable—probably more comfortable than it's been for the average human being
throughout all of recorded history.

Will you be the last person standing
if one of thess apocalyptic scenarios Robot Takeover

plays out?

robot rebellion is still a disquieting thought. We are already outnumbered by our

technological gadgets, and even Bill Gates fears the day his Japanese robot slave turns -

paragraph, so it floats to
the left of the following
text. Notice that the width
of the caption is limited,
to create a nice, packed
paragraph.

But don't get too smug. There's still
plenty of horrific ways it could all fall
apart. In this article, you'll learn about a
few of our favorites.

Mayan Doomsday L
Skeptics suggest that the Mayan calendar
simply rolls to a new 5,126-year era after
2012, and doesn't actually predict a life-
ending apecalypse. But given that the
long-dead Mayans were wrong about
virtually everything else, why should we
trust them on this?

Not quite as frightening as a Vampire
Takeover or Living-Dead Takeover, a

Of course it’s still up to you to use a style sheet to position and format your figure
box. In this example, you need to change the style rule selector that targets the
caption text. Right now it uses .FloatFigure p, but the revised example requires
.FloatFigure figcaption.

Inthis example, the <figure> element still gets its formatting based on its class name (FloatFigure),
not its element type. That’s because you're likely to format figures in more than one way. For example, you might
have figures that float on the left, figures that float on the right, ones that need different margin or caption
settings, and so on. To preserve this sort of flexibility, it makes sense to format your figures with classes.

In the browser, the figure still looks the same. The difference is that the purpose of
your figure markup is now perfectly clear. (Incidentally, <figcaption> isn’t limited to
holding text—you can use any HTML elements that make sense. Other possibilities
include links and tiny icons.)

Finally, it’s worth noting that in some cases the figure caption may include a complete
description of the image, rendering the alt text redundant. In this situation, you can
remove the alt attribute from the element:

48

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

RETROFITTING

<figure class="FloatFigure"> A TRADITIONAL
HTML PAGE

<figcaption>A human skull lies on the sand</figcaption>
</figure>

Just make sure you don't set the alternate text with an empty string, because that
means your image is purely presentational and screen readers should avoid it al-
together.

Adding a Sidebar with <aside>

The new <aside> element represents content that is tangentially related to the text
that surrounds it. For example, you can use an <aside> in the same way you use a
sidebar in print—to introduce a related topic or to expand on a point that’s raised
in the main document. (See, for instance, the box at the bottom of page 50.) The
<aside> element also makes sense if you need somewhere to stash a block of ads,
some related content links, or even a pull-quote like the one shown in Figure 2-5.

(=8 FIGURE 2-5

I'\ _./],-: ..__.:'|| 2 ApocalypsePage Revised.html O ~ = X H @ Apocalypse Now x {0t 7 59 A pull-quote is a technique
arobot rebellion is still a disquieting thought. We are already - borrowed from print.
outnumbered by our technological gadgets, and even Bill Gates fears the It attracts the reader’s

day his Japanese robot slave turns him over by the ankles and asks (ina

suitably robotic voice) "Who's your daddy now?" attention and highlights

important content.

Unexplained Singularity

We don't know how the ‘ ‘ We don 't knOW

universe started, so we

can't be sure it won't just how the unfverse
end, maybe today, and

maybe withnothingmore stgpted, so we can't be

exciting than a puff of anti- -

matter and a slight fizzing sure It WwWon 't—just end
’

noise.

Runaway Climate Change mﬂybe tOday, , ’

Dismissed by some, Al
Gore's prophecy of doom
may still come true. If it does, we may have to contend with vicious
storms, widespread food shortages, and surly air conditioning repairmen.

m

Global Epidemic
Some time in the future, a lethal virus could strike. Predictions differ -

You can easily create this effect with the well-worn <div> element, but the <aside>
element gives you a more meaningful way to mark up the same content:

<p>... (in a suitably robotic voice) "Who's your daddy now?"</p>

<aside class="PullQuote">

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 49

www.it-ebooks.info

RETROFITTING
A TRADITIONAL
HTML PAGE

UP TO SPEED

just end, maybe today.

We don't know how the universe started, so we can't be sure it won't

</aside>

<h2>Unexplained Singularity</h2>

This time, the style sheet rule floats the pull-quote to the right. Here are the styling

details, just in case you’re curious:

.PullQuote {
float: right;
max-width: 300px;

border-top: thin black solid;
border-bottom: thick black solid;

font-size: 30px;
line-height: 130%;
font-style: italic;
padding-top: 5px;
padding-bottom: 5px;
margin-left: 15px;
margin-bottom: 10px;

.PullQuote img {
vertical-align: bottom;

}

How the Semantic Elements Were Chosen

Before inventing HTML5, its creators took a long look at
the current crop of web pages. And they didn’t just browse
through their favorite sites; instead, they reviewed the Google-
crunched statistics for over a billion web pages. (You can see
the results of this remarkable survey at http://tinyurl.com/
state-of-the-web.)

The Google survey analyzed the markup and compiled a list of
the class names web authors were using in their pages. Their
idea was that the class name might betray the purpose of the
element and give a valuable clue about the way people were
structuring pages. For example, if everyone hasa <div> ele-
ment that uses a class named header, then it’s logical to assume
everyone is putting headers at the tops of their web pages.

The first thing that Google found is that the vast majority of
pages didn’t use class names (or style sheets at all). Next, they

compiled a short list of the most commonly used class names.
Some of the most popular names were footer, header, title,
menu, nav—which correspond well to HTML5’s new semantic
elements <footer>, <header>, and <nav>. A few others
suggest possible semantic elements that haven’t been created
yet, like search and copyright.

In other words, the Web is awash with the same basic de-
signs—for example, pages with headers, footers, sidebars, and
navigation menus. But everyone has a slightly different way of
doing more or less the same thing. From this realization, it’s
just a small leap to decide that the HTML language could be
expanded with a few new elements that capture the semantics
of what everyone is already doing. And this is exactly the
insight that inspired HTML5’s semantic elements.

50

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library
BROWSER

COMPATIBILITY

FOR THE

M Browser Compatibility for the Semantic EEE'@ENJ}E

Elements

So far, this exercise has been a lot of fun. But the best-structured page is useless if
it won’t work on older browsers.

Fortunately, HTML5’s semantic elements are broadly supported on all modern brows-
ers. It’s almost impossible to find a version of Chrome, Firefox, Safari, or Opera that
doesn’t recognize them. The chief stumbling block is any version of Internet Explorer
before IE 9, including the still-kicking IE 8.

Fortunately, this is one missing feature that’s easy to patch up. After all, the semantic
elements don’t actually do anything. To support them, a browser simply needs to
treat them like an ordinary <div> element. And to make that happen, all you need
to do is fiddle with their styles, as described in the following sections. Do that, and
you’ll be rewarded with super-reliable semantic elements that work with any browser
that’s been released in the last 10 years.

NOTE If you’re already using Modernizr (page 31), your pages are automatically immunized against semantic
element issues, and you can safely skip the following discussion. But if you aren’t using Modernizr, or if you’re
curious about how this fix works, read on.

Styling the Semantic Elements

When a browser meets an element it doesn’t recognize, it treats it as an inline ele-
ment. Most of HTML5’s semantic elements (including all the ones you’ve seen in this
chapter, except <time>) are block elements, which means the browser is supposed
to render them on a separate line, with a little bit of space between them and the
preceding and following elements.

Web browsers that don’t recognize the HTML5 elements won’t know to display some
of them as block elements, so they’re likely to end up in a clumped-together mess.
To fix this problem, you simply need to add a new rule to your style sheet. Here’s a
super-rule that applies block display formatting to the nine HTML5 elements that
need it in one step:

article, aside, figure, figcaption, footer, header, main, nav, section,
summary {

display: block;
}

This style sheet rule won’t have any effect for browsers that already recognize
HTMLS5, because the display property is already set to block. And it won’t affect
any style rules you already use to format these elements. They will still apply in
addition to this rule.

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 51

www.it-ebooks.info

al Library
BROWSER

COMPATIBILITY

FOR THE
SEMANTIC Using the HTML5 Shiv

ELEMENTS

That technique described in the previous section is enough to solve compatibility
issues in most browsers, but “most” doesn’t include Internet Explorer 8 and older.
Old versions of |E introduce a second challenge: They refuse to apply style sheet
formatting to elements they don’t recognize. Fortunately, there is a workaround:
You can trick IE into recognizing a foreign element by registering it with a JavaScript
command. For example, here’s a script block that gives IE the ability to recognize
and style the <header> element:

<script>
document.createElement("header")
</script>

Rather than write this sort of code yourself, you can find a ready-made script that
does it for you. You simply need to add a reference to it in the <head> section of
your page, like this:

<head>
<title>...</title>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>

<head>
This code grabs the script from the html/5shim.googlecode.com web server and
runs it before the browser starts processing the rest of the page. This script uses
the JavaScript described above to create all the new HTML5 elements and goes
one step further, by dynamically applying the styles described on page 51, to make

sure the new elements display as proper block elements. The only remaining task
is for you to use the elements and add your own style sheet rules to format them.

Incidentally, the htm/5.js script code is conditional—it runs only if it detects that
you’re running an old version of Internet Explorer. But if you want to avoid the
overhead of requesting the JavaScript file at all, you can make the script reference
conditional, like so:

<!--[if 1t IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/htmls.js"></script>
<![endif]-->

That way, other browsers (and IE 9 or later) will ignore this instruction, saving your
page a few milliseconds of time.

TIP The previous example uses the HTML5 shiv straight from Google’s code-hosting site. However, you can
download your own copy from http://tinyurl.com/the-shiv and place it alongside your web pages. Just modify
the script reference to point to the location where you upload the script file.

Finally, it’s worth pointing out that if you test a web page on your own computer
(rather than uploading it to a web server), Internet Explorer automatically places

52 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

DESIGNING

A SITE WITH
the page in restricted mode. That means you’ll see the infamous |IE security bar at THE SEMANTIC

the top of the page, warning you that Internet Explorer has disabled all your scripts, ELEMENTS

including the HTML5 shiv. To run it, you need to explicitly click the security bar and
choose to allow active content.

This problem disappears once you upload the page to a website, but it can be a
hassle when testing your work. The solution is to add the “mark of the Web” com-
ment to the beginning of your web page, as described on page 14.

Modernizr: An All-in-One Fix

There’s one excellent alternate solution to the semantic styling problem: Use Mod-
ernizr (page 31). It has the HTMLS5 shiv built in, which means there’s no need for you
to fiddle with style rules or to include a reference to the html5.js script. So if you're
already using Modernizr to test for feature support, consider the problem solved.

M Designing a Site with the Semantic
Elements

Adding the semantic elements to a simple, document-like page is easy. Adding them
to a complete website isn’t any harder, but it does raise a whole lot more questions.
And because HTML5 is essentially virgin territory, there are a small number of settled
conventions (but a large number of legitimate disagreements). That means when
you have a choice between two markup approaches, and the HTML5 standard says
they’re both perfectly acceptable, it’s up to you to decide which one makes the
most sense for your content.

Figure 2-6 shows the more ambitious example that you’ll consider next.

Deeper into Headers

There are two similar, but subtly different, ways to use the <header> element. First,
you can use it to title some content. Second, you can use it to title your web page.
Sometimes, these two tasks overlap (as with the single article example shown in
Figure 2-1). But other times, you’ll have a web page with both a page header and
one or more pieces of headered content. Figure 2-6 is this sort of example.

What makes this situation a bit trickier is that the conventions for using the <header>
element change based onits role. If you’re dealing with content, you probably won’t
use a header unless you need it. And you need it only if you’re creating a “fat” header.
That is, one that includes the title and some other content—for example, a summary,
the publication date, an author byline, an image, or subtopic links. Here’s an example:

<header>
<h1>How the World Could End</h1>
<p class="Tagline">Scenarios that spell the end of life as we know it</p>
<p class="Byline">by Ray N. Carnation</p>

</header>

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 53

www.it-ebooks.info

DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

[Apacalypse Today [T]
€ > | [filey//C/HTMLS/Chapter 02/ApocalypseSite.html

FIGURE 2-6

Here, the single-page article
you considered previously has
been placed in a complete
content-based website. A site
header caps the page; the
content is underneath; and a
sidebar on the left provides
navigation controls, “About Us”

ARE YOU READY FOR...

Apocalypse

Articles E ; ; ;
e information, and an image ad.
+ Howe The World Could Eadd How the World Could End
+ Would Aliens Enslave or Scenarios that spell the end of life as we know

Eradicate Us? by Ray N. Carnation
« Great Floods of the Past
M wﬂm RIGHT NOW, you're probably feeling pretty good. After all, life in the developed

cer?

world is comfortable—probably more comfortable than it's been for the average

 Why Everything You Know About N .
e L human being throughout all of recorded history.

Zombie Attacks Is Wrong

* More...
o But don't get too smug. There's still
lenty of horrific ways it could all fall
About Us Py v

apart. In this article, you'll learn about

Apocalypse Today is a world leader a few of our favorites.

in conspiracy theories, dour
predictions, and panic-spreading,

Our motto is "be prepared for every
possibility (except the good ones).”

Mayan Doomsday
Skeptics suggest that the Mayan
calendar simply rolls to a new
5,126-year era after 2012, and
doesn't actually predict a life-ending
apocalypse. But given that the

iR, long-dead Mayans were wrong about
Will you be the last person standing virtually everything else, why should
if one of these apecalyptic scenarios we trust them on this?
plays out?
Robot Takeover ‘
Not quite as frightening as a Vampire Takeover or Living-Dead Takeover, a robot
rebellion is still a disquieting thought. We are already outnumbered by our
technological gadgets, and even Bill Gates fears the day his Japanese robot slave
turns him over by the ankles and asks (in a suitably robotic voice) "Who's your
daddy now?"

Unexplained Singularity

We don't know how the universe “ We don't know il

However, when people create a header for a website, they almost always wrap it in
a <header> element, even if there’s nothing there but a title in a big CSS-formatted
box. After all, it’s a major design point of your website, and who knows when you
might need to crack it open and add something new?

Here’s the takeaway: Pages can have more than one <header> element (and they
often will), even though these headers play different roles on the page.

The apocalyptic site (Figure 2-6) uses the <header> element for the website header
and another <header> element for the article title. The <header> that caps the website
holds a banner image, which combines graphical text and a picture:

<header class="SiteHeader">

<h1 style="display:none">Apocalypse Today</h1>
</header>

54 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library
DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

UP TO SPEED

Turning a Web Page into a Website

Figure 2-6 shows a single page from a fictional website. platforms like ASP.NET and PHP to content management
In a real website, you'd have the same layout (and the same systems like Drupal and WordPress.

side panel) on dozens of different pages or more. The only * Page templates. Some high-powered web page editors
thing that would change as the visitor clicks around the page (like Adobe Dreamweaver and Microsoft Visual Studio)
is the main page content—in this case, the article. include a page template feature. You begin by creating
HTML5 doesn’t have any special magic for turning web pages atemplate that defines the structure of your web pages
into websites. Instead, you need to use the same tricks and and includes thf: repeating content vog want to appear
technologies that web developers rely on in traditional HTML: onevery page (like the header and the sidebar). Then you

use that template to create all your site pages. Here’s the
neat part: When you update the template, your web page
editor automatically updates all the pages that use it.

+ Server-side frameworks. The idea is simple: When a
browser requests a page, the web server assembles the

pieces, including the common elements (like a navigation
bar) and the content. This approach is by far the most Of course, you're free to use either technique, so this book

common, and it’s the only way to go on big, professional focuses on the final result: the pasted-together markup that
websites. Countless different technologies implement ~ [0rms @ complete page and is shown in the web browser.

this approach in different ways, from web programming

Right away, you’ll notice that this header adds a detail that you don’t see on the
page: an <h1> heading that duplicates the content that’s in the picture. However, an
inline style setting hides this heading.

This example raises a clear question: What’s the point of adding a heading that you
can’t see? There are actually several reasons. First, all <header> elements require
some level of heading inside, just to satisfy the rules of HTML5. Second, this design
makes the page more accessible for people who are navigating it with screen read-
ers, because they’ll often jump from one heading to the next without listening to
the content in between. And third, it establishes a heading structure that you can
use in the rest of the page. That’s a fancy way of saying that if you start with an
<h1> for your website header, you may decide to use <h2> elements to title the other
sections of the page (like “Articles” and “About Us” in the sidebar). For more about
this design decision, see the box on page 56.

NOTE 0f course, you could simplify your life by creating an ordinary text header. (And if you want fancy
fonts, the (SS3 web font feature, described on page 206, can help you out.) But for the many web pages that put
the title in a picture, the hidden heading trick is the next best solution.

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 55

www.it-ebooks.info

DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

FREQUENTLY ASKED QUESTION

The Heading Structure of a Site

Is it acceptable to have more than one level-1 heading on a
page? s it a good idea?

According to the official rules of HTML, you can have as many
level-Theadings as you want. However, website creators often
strive to have just a single level-Theading per page, because it
makes for a more accessible site—because people using screen
readers might miss a level-1 heading as they skip from one
level-2 heading to the next. There’s also a school of webmaster
thought that says every page should have exactly one level-1
heading, whichis unique across the entire website and clearly
tells search engines what content awaits.

The example in Figure 2-6 uses this style. The “Apocalypse
Today” heading that tops the site is the only <h1> on the
page. The other sections on the page, like “Articles” and “About
Us” in the sidebar, use level-2 headings. The article title also
uses a level-2 heading. (With a little bit of extra planning,
you could vary the text of the level-1 heading to match the
current article—after all, this heading isn’t actually visible,

and it could help the page match more focused queries in a
search engine like Google.)

But there are other, equally valid approaches. For example, you
could use level-1 headings to title each major section of your
page, including the sidebar, the article, and so on.

Or, you could give the website a level-1 site heading and put
level-2 headings in the sidebar (as in the current example) but
make the article title into a second level-1heading. This works
fine in HTML5, because of its new outlining system. As you’ll
learn on page 65, some elements, including <article>, are
treated as separate sections, with their own distinct outlines.
So it makes perfect sense for these sections to start the head-
ing hierarchy over again with a brand new <h1>. (However,
HTML5 says it’s fine to start with a different heading level, too.)

In short, there’s no clear answer about how to structure your
website. It seems likely that the “multiple <h1>” approach will
become increasingly popular as HTMLS conquers the Web. But
for now, many web developers are sticking with the “single
<h1>” approach to keep screen readers happy.

Navigation Links with <nav>

The most interesting new feature in the apocalyptic website is the sidebar on the
left, which provides the website’s navigation, some extra information, and an image
ad. (Typically, you'd throw in a block of JavaScript that fetches a randomly chosen
ad using a service like Google AdSense. But this example just hard-codes a picture
to stand in for that.)

In a traditional HTML website, you’d wrap the whole sidebar in a <div>. In HTMLS5,
you almost always rely on two more specific elements: <aside> and <nav>.

The <aside> element is a bit like the <header> element in that it has a subtle, slightly
stretchable meaning. You can use it to mark up a piece of related content, as you
did with the pull-quote on page 49. Or, you can also use it to designate an entirely
separate section of the page—one that’s offset from the main flow.

The <nav> element wraps a block of links. These links may point to topics on the
current page, or to other pages on the website. Most pages will have multiple <nav>
sections in them. But not all links need a <nav> section—instead, it’s generally
reserved for the largest and most important navigational sections on a page. For

56 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

example, if you have a list of articles (as in Figure 2-6), you definitely need a <nav>
section. But if you have just a couple of links at the bottom of the page with licens-
ing and contact information, a full-blown <nav> isn’t necessary.

With these two elements in mind, it’s a good time to try a practice exercise. First,
review the sidebar in Figure 2-6. Next, sketch out on a piece of paper how you would
mark up the structure of this content. Then, read on to find out the best possible
solution.

In fact, there are at least two reasonably good ways to structure this sidebar, as
shown in Figure 2-7.

DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

B e

<nav> <aside> FIGURE 2-7

| [Links go here] } <nav>
[Links go here]

<div>

wrapped in a <nav>.

Left: You can think of the entire side panel as a navigation bar, with
some other content wedged in. In this case, the whole panel can be a
<nav>, and the other content sections require an <aside> (because
they aren’t related to the sidebar’s main content, the links).

Right: Alternatively, consider the entire side panel to be a separate
web page section that serves several purposes. In this case, the
sidebar becomes an <aside> while the navigational content inside is

The apocalyptic site uses the second approach (Figure 2-7, right). That’s because
the sidebar seems to serve several purposes, with none clearly being dominant. But
if you have a lengthy and complex navigational section (like a collapsible menu)
followed by a short bit of content, the first approach just might make more sense.

Here’s the markup that shapes the sidebar, dividing it into three sections:

<aside class="NavSidebar">
<nav>
<h2>Articles</h2>

How The World Could End</1i>
Would Aliens Enslave or Eradicate Us?</1i>

</nav>
<section>
<h2>About Us</h2>
<p>Apocalypse Today is a world leader in conspiracy theories ..."

</p>
</section>

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS

www.it-ebooks.info

57

DESIGNING

A SITE WITH
THE SEMANTIC <div>
ELEMENTS
</div>
</aside>

Here are the key points:

* The title sections (“Articles” and “About Us”) are level-2 headings. That
way, they are clearly subordinate to the level-1 website heading, which makes
the page more accessible to screen readers.

* The links are marked up in an unordered list using the and <1i> ele-
ments. Website designers agree that a list is the best, most accessible way to
deal with a series of links. However, you may need to use style sheet rules to
remove the indent (as done here) and the bullets (not done in this example).

* The “About Us” section is wrapped in a <section> element. That’s because
there’s no other semantic element that suits this content. A <section> is slightly
more specific than a <div>—it’s suitable for any block of content that starts
with a heading. If there were a more specific element to use (for example, a
hypothetical <about> element), that would be preferable to a basic <section>,
but there isn’t.

* The image ad is wrapped in a <div>. The <section> element is appropriate
only for content that starts with a title, and the image section doesn’t have a
heading. (Although if it did—say, “A Word from Our Sponsors”—a <section>
element would be the better choice.) Technically, it’s not necessary to put any
other element around the image, but the <div> makes it easier to separate
this section, style it, and throw in some JavaScript code that manipulates it, if
necessary.

There are also some details that this sidebar doesn’t have but many others do. For
example, complex sidebars may start with a <header> and end with a <footer>. They
may also include multiple <nav> sections—for example, one for a list of archived
content, one with a list of late-breaking news, one with a blogroll or list of related
sites, and so on. For an example, check out the sidebar of a typical blog, which is
packed full of sections, many of which are navigational.

The style sheet rules you use to format the <aside> sidebar are the same as the
ones you’d use to format a traditional <div> sidebar. They place the sidebar in the
correct spot, using absolute positioning, and set some formatting details, like pad-
ding and background color:

aside.NavSidebar
{
position: absolute;
top: 179px;
left: opx;
padding: 5px 15px Opx 15pX;
width: 203px;

58 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

DESIGNING
A SITE WITH
min-height: 1500px; THE SEMANTIC
background-color:teee; ELEMENTS
font-size: small;
}

This rule is followed by contextual style sheet rules that format the <h2>, , <1i>,
and elements in the sidebar. (As always, you can get the sample code from
http://prosetech.com/html5, and peruse the complete style sheet.)

Now that you understand how the sidebar is put together, you’ll understand how it
fits into the layout of the entire page, as shown in Figure 2-8.

As you’ve learned, the <nav> is often found on its own, or in an <aside>. There’s one more com-
mon place for it to crop up: in the <header> element that tops a web page.

b FIGURE 2-8
Leh Here are all the semantic elements that you’ll find in the apocalyptic

web page shown in Figure 2-6.
[<header> J

4 N

<aside> <article>

<nav> <header>

<section> + [Article content] :

<

<aside>

\ J
\ S

Deeper into Sections

As you’ve already learned, the <section> is the semantic element of last resort. If you
have a titled block of content, and the other semantic elements aren’t appropriate,
then the <section> element is generally a better choice than <div>.

So what goes in a typical section? Depending on your perspective, the <section>
element is either a flexible tool that fits many needs, or a loose and baggy monster
with no clear identity. That’s because sections play a variety of different web page
roles. They can mark up any of the following:

* Small blocks of content that are displayed alongside the main page, like the
“About Us” paragraph in the apocalyptic website.

» Self-contained content that can’t really be described as an article, like a customer
billing record or a product listing.

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 59

www.it-ebooks.info

al Library
DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

* Groups of content—for example, a collection of articles on a news site.

* A portion of a longer document. For example, in the apocalyptic article, you
could mark up each separate end-of-the-world scenario as a distinct section.
Sometimes you’ll use sections in this way to ensure a correct outline for your
document, as explained in the next section.

The last two items in the list are the most surprising. Many web developers find it’s
a bit of a stretch to use the same element to deal with a small fragment of an article
and an entire group of articles. Some think that HTML5 should have at least two
different elements to deal with these different scenarios. But the creators of HTML5
decided to keep things simple (by limiting the number of new elements) while mak-
ing the new elements as flexible and practical as possible.

There’s one last consideration. The <section> element also has an effect on a web
page’s outline, which is the concept you’ll explore on page 65.

GEM IN THE ROUGH

Collapsible Boxes with <details> and <summary>

You’ve no doubt seen collapsible boxes on the Web—sections
of content that you can show or hide by clicking a heading.
Collapsible boxes are one of the easiest feats to pull off with
basic JavaScript. You simply need to react when the heading
is clicked, and then change a style setting to hide your box:

var box = document.
getElementById("myBox");
box.style.display = "none";

And then back again to make it reappear:

var box = document.
getElementById("myBox");
box.style.display = "block";

Interestingly, HTML5 adds two semantic elements that aim to
make this behavior automatic. The idea is that you wrap your
collapsible section in a <details> element and wrap the
heading inside in a <summary> element. The final result is
something like this:

<details>
<summary>Section #1</summary>

<p>If you can see this content, the
section is expanded</p>
</details>

Browsers that support these elements (currently, that’s just
Chrome), will show just the heading, possibly with some sort of
visual adornment (like a tiny triangle icon next to the heading).
Then, if the user clicks the heading, the full content expands
into view. Browsers that don’t support the <details> and
<summary> elements will show the full content right from the
start, without giving the user any way to collapse it.

The <details>and <summary> elements are controversial.
Many web developers feel that they aren’t really semantic,
because they’re more about visual style than logical structure.

For now, it’s best to avoid the <details>and <summary>
elements hecause they have such poor browser support. Al-
though you could write a workaround that uses JavaScript on
browsers that don’t support them, writing this workaround is
more effort than just using a few lines of JavaScript to perform
the collapsing on your own, on any browser.

60

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library
DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

Deeper into Footers

HTMLS5 and fat headers were meant for each other. Not only can you stuff in subtitles
and bylines, but you can also add images, navigational sections (with the <nav> ele-
ment), and virtually anything else that belongs at the top of your page.

Oddly, HTML5 isn’t as accommodating when it comes to footers. The footer is sup-
posed to be limited to a few basic details about the website’s copyright, author-
ship, legal restrictions, and links. Footers aren’t supposed to hold long lists of links,
important pieces of content, or extraneous details like ads, social media buttons,
and website widgets.

This raises a question: What should you do if your website design calls for a fat
footer? After all, fat footers are wildly popular in website design right now (see Figure
2-9 for an example). They incorporate a number of fancy techniques, sometimes
including the following:

» Fixed positioning, so the footer is always attached to the bottom of the browser
window, no matter where the visitor scrolls (as with the example in Figure 2-9).

» A close button, so the visitor can close the footer and reclaim the space after
reading the content (as with the example in Figure 2-9). To make this work, you
use a simple piece of JavaScript that hides the element that wraps the footer
(like the code shown in the box on page 60).

== g
/[Apocalypse Today = FIGURE 2-9
C | @ FatFooterhtml KN This absurdly fat footer is

- stuffed with garish extras,
like an award picture and
social media buttons. It
uses fixed positioning to
lock itself to the bottom of
the browser window, like
a toolbar. Fortunately, this

ARE YOU READY FOR...

Apocalypse

n

Articles footer has one redeeming
+ How The World Could Eng How the World Could End quality: the close button
* Would Aliens Enslave or S ios th: 11 th. d of life o : .

gﬂdilcdaﬁ:us.’ﬁn 1. cenarios that S;Z;N_Ecs:m;;" ife as we know in [he tOp-rIght corner
i ryesaer—— that lets anyone banish it
. %Mm RIGHT NOW, you're probably feeling pretty good. After all, life in the developed world .

SRR is comfortable—probably more comfortable than it's been for the average human ffom View.

* Why Everything You Know About
Zombie Attacks Is Wrong

* More ...
But don't get too smug. There's still
e - \ plenty of horrific ways it could all fall
P i my 2

being throughout all of recorded history.

Werld Follow us on Trwitter, a
Finalist for Facebook, Myspace,

Most Linkedln, StambleUpon,

e M EWODDE € T e g B

Website 0Oldfashioned email, or

2014, ShareThis.

The » Copyright © 2014 » AboutUs Disclaimer ContactUs

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 61

www.it-ebooks.info

al Library

DESIGNING

A SITE WITH
THE SEMANTIC

« Apartially transparent background, so you can see the page content through
ELEMENTS

the footer. This setup works well if the footer is advertising breaking news or an
important disclaimer, and it’s usually used in conjunction with a close button.

* Animation, so the footer springs or slides into view. (For an example, see the
related-article box that pops up when you reach the bottom of an article at
www.nytimes.com.)

If your site includes this sort of footer, you have a choice. The simple approach is
to disregard the rules. This approach is not as terrible as it sounds, because other
website developers are sure to commit the same mistake, and over time the official
rules may be loosened, allowing fancier footers. But if you want to be on the right
side of the standard right now, you need to adjust your markup. Fortunately, it’s
not too difficult.

The trick is to split the standard footer details from the extras. In the browser, these
can appear to be a single footer, but in the markup, they won’t all belong to the
<footer> element. For example, here’s the structure of the fat footer in Figure 2-9:

<div id="FatFooter">
<!I-- Fat footer content goes here. -->

<footer>
<l-- Standard footer content goes here. -->
<p>The views expressed on this site do not ... </p>

</footer>
</div>

The outer <div> has no semantic meaning. Instead, it’s a convenient package that
bundles the extra “fat” content with the bare-bones footer details. It also lets you
apply the style sheet formatting rule that locks the fat footer into place:

#FatFooter {
position: fixed;
bottom: 0px;
height: 145px;
width: 100%;
background: #ECD672;
border-top: thin solid black;
font-size: small;

}

In this example, the style sheet rule applies its formatting by ID name (using the #FatFooter
selector) rather than by class name (for example, using a . FatFooter selector). That’s because the fat footer
already needs a unique ID, so the JavaScript code can find it and hide it when someone clicks the close button.
[t makes more sense to use this unique ID in the style sheet than to add a class name for the same purpose.

62 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library
DESIGNING

A SITE WITH
You could also choose to put the footer in an <aside> element, to clearly indicate THE SEMANTIC

ELEMENTS

that the footer content is a separate section, and tangentially related to the rest of
the content on the page. Here’s what that structure looks like:

<div id="FatFooter">
<aside>
<!-- Fat footer content goes here. -->

</aside>

<footer>
<!-- Standard footer content goes here. -->
<p>The views expressed on this site do not ... </p>
</footer>
</div>

The important detail here is that the <footer> is not placed inside the <aside> ele-
ment. That’s because the <footer> doesn’t apply to the <aside> but to the entire
website. Similarly, if you have a <footer> that applies to some piece of content, your
<footer> needs to be placed inside the element that wraps that content.

The rules and guidelines for the proper use of HTML5’s semantic elements are still evolving. Questions
about the proper way to mark up large, complex sites stir ferocious debate in the HTML community. The best
advice is this: If something doesn’t seem true to your content, don’t do it. Or you can discuss it online, where you
can get feedback from dozens of super-smart HTML gurus. (One particularly good site is http://html5doctor.com,
where you can see these ongoing debates unfolding in the comments section of most articles.)

Identifying the Main Content with <main>

HTMLS5 includes a sometimes-overlooked <main> element that identifies a web page’s
primary content. In the apocalypse site, for example, the main content is the entire
article, not including the website header, sidebar, or footer. You should strongly
consider using it on your own pages.

A properly applied <main> element wraps the <article> element precisely. Here’s
how it looks in the apocalypse page:

<IDOCTYPE html>
<html lang="en">
<head>
</head>
<body>

<header>

</header>

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 63

www.it-ebooks.info

DESIGNING

A SITE WITH
THE SEMANTIC
ELEMENTS

<aside>
</aside>

<main>
<article>

</article>
</main>
<footer>
</footer>
</body>
</html>

You can’t put the <main> element inside the <article> element (or in any other
semantic element). That’s because the <main> element is meant to hold the page’s
full main content. It’s not meant to indicate a portion of important content inside
your document. For the same reason, unlike the other semantic elements, the <main>
element can be used only once in a page.

At first glance, the <main> element doesn’t seem terribly useful. However, it can
be important for screen readers, because it lets them skip over extraneous mate-
rial—like website headers, navigation menus, ads, sidebars, and so on—to get to the
real content. And although the <main> element clings to the <article> element in
this example, that’s not necessarily the case in a more complex page. For example,
if you created a page that lists multiple article summaries, each one wrapped in an
<article> element, the <main> element would wrap the complete list of <article>
elements, like this:

<main>
<article>

</;;;ic1e>
<article>
</;;;ic1e>
<article>

</article>

</main>

64

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE HTML5
OUTLINING
SYSTEM

Here, the distinction is clear—each <article> represents a self-contained piece of
content, but the main content of the page is the full set of articles.

It’s appropriate to use the <main> element on any type of page, even if that page
doesn’t include an article. For example, if you build a game or an app, the main con-
tent is the bunch of markup that creates that game or app. You can use the <main>
element to wrap the whole shebang, not including outside details like headers and
footers.

The <main> element is a relative newcomer. It was introduced in the slightly tweaked version of
the HTMLS standard called HTML 5.1 (page xv).

M The HTML5 Outlining System

HTMLS5 defines a set of rules that dictate how you can create a document outline
for any web page. A web page’s outline could come in handy in a lot of ways. For
example, a browser could let you jump from one part of an outline to another. A
design tool could let you rearrange sections by dragging and dropping them in an
outline view. A search engine could use the outline to build a better page preview,
and screen readers could benefit the most of all, by using outlines to guide users
with vision difficulties through a deeply nested hierarchy of sections and subsections.

However, none of these scenarios is real yet, because—except for the small set of
developer tools you’ll consider in the next section—almost no one uses HTML5
outlines today.

NOTE It’s hard to get excited about a feature that doesn’t affect the way the page is presented in a browser
and isn’t used by other tools. However, it’s still a good idea to review the outline of your web pages (or at least
the outline of a typical page from your website) to make sure that its structure makes sense and that you aren’t
breaking any HTMLS rules.

How to View an Outline

To understand outlines, you can simply take a look at the outlines your own pages
produce. Right now, no browser implements the rules of HTML5 outlines (or gives
you a way to peek at one). However, there are several tools that fill the gap:

« Online HTML outliner. Visit http://gsnedders.html5.org/outliner and tell the
outliner which page you want to outline. As with the HTML5 validator you used
in Chapter 1 (page 17), you can submit the page you want to outline in any of
three ways: by uploading a file from your computer, by supplying a URL, or by
pasting the markup into a text box.

* Chrome extension. You can use the h50 plug-in to analyze the outlines of
pages when you view them in Chrome. Install it at http://code.google.com/p/
h50and then surfto an HTML5 page somewhere on the Web (sadly, h50 doesn’t

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 65

www.it-ebooks.info

al Library

THE HTMLS
OUTLINING
SYSTEM

work with files that are stored on your computer). An outline icon appears in
the address bar, which reveals the structure of the page when clicked (Figure
2-10). The h50 page also provides a bookmarklet (a piece of JavaScript code
that you can add to your web browser’s bookmark list) which lets you display
page outlines in Firefox and Internet Explorer, albeit with a few quirks.

* Opera extension. There’s an Opera version of the h50 Chrome extension. Get
it at http://tinyurl.com/3k3ecdy.

r N (=8 FIGURE 2-10

| B Apocaiypse Now & When you visit an HTMLS page

<« C' | © ApocalypsePage_Original.htm = 9% A with the Chrome h5o extension

r 5 n installed, an outline icon ap-

1. % x pears in the address bar. Click

2. Robot Takeover the icon to pop open a window
3- Unexplained Sinaularity 3 with the full page outline.
5. Global Epidemic

RIGHT NOoW, you're probably feeling pretty good. After all, life in
the developed world is comfortable—probably more
comfortable than it's been for the average human being
throughout all of recorded history.

But don't get too smug. There's still plenty of horrific ways it
could all fall apart. In this article, you'll learn about a few of our
favorites.

Basic Outlines

To visualize the outline of your web page, imagine it stripped of all content except
for the text in a numbered heading element (<h1>, <h2>, <h3>, and so on). Then,
indent those headings based on their place in your markup, so more deeply nested
headings are indented more in the outline.

For example, consider the apocalypse article in its initial, pre-HTML5 state:
<body>
<div class="Header">
<h1>How the World Could End</h1>
</div>

<h2>Mayan Doomsday</h2>

66 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE HTML5

<h2>Robot Takeover</h2> OUTLINING
SYSTEM

<h2>Unexplained Singularity</h2>
<h2>Runaway Climate Change</h2>
<h2>Global Epidemic</h2>
<div class="Footer">
</div>
</body>
This simple structure leads to an outline like this:
1. How the World Could End
1. Mayan Doomsday
2. Robot Takeover
3. Unexplained Singularity
4. Runaway Climate Change
5. Global Epidemic

Two levels of headings (<h1> and <h2>) create a two-level outline. This scheme is
similar to the outline features in many word processing programs—for example, you
can see much the same thing in Microsoft Word’s Navigation pane.

On the other hand, markup like this:

<h1>Level-1 Heading</h1>
<h2>Level-2 Heading</h2>
<h2>Level-2 Heading</h2>
<h3>Level-3 Heading</h3>
<h2>Level-2 Heading</h2>

Gets an outline like this:
1. Level-1 Heading
1. Level-2 Heading
2. Level-2 Heading
1. Level-3 Heading
3. Level-2 Heading

Again, there are no surprises.

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 67

www.it-ebooks.info

al Library

THE HTMLS5
OUTLINING Finally, the outline algorithm is smart enough to ignore skipped levels. For example,

SYSTEM if you write this slightly wobbly markup, which skips from <h1> directly to <h3>:

<h1>Level-1 Heading</h1>
<h2>Level-2 Heading</h2>
<h1>Level-1 Heading</h1>
<h3>Level-3 Heading</h3>
<h2>Level-2 Heading</h2>

You get this outline:
1. Level-1 Heading
1. Level-2 Heading
2. Level-1Heading
1. Level-3 Heading
2. Level-2 Heading

Now the level-3 heading has level-2 status in the outline, based on its position in the
document. This might seem like one of those automatic error corrections browsers
love to make, but it actually serves a practical purpose. In some situations, a web page
may be assembled out of separate pieces—for example, it might contain a copy of
an article that’s published elsewhere. In this case, the heading levels of the embed-
ded content might not line up perfectly with the rest of the web page. But because
the outlining algorithm smooths these differences out, it’s unlikely to be a problem.

Sectioning Elements

Sectioning elements are the ones that create a new, nested outline inside your page:
<article>, <aside>, <nav>,and <section>. To understand how sectioning elements
work, imagine a page that contains two <article> elements. Because <article>
is a sectioning element, this page has (at least) three outlines—the outline of the
overall page and one nested outline for each article.

To get a better grasp of this situation, consider the structure of the apocalypse
article, after it’s been revised with HTML5:

<body>
<article>
<header>
<h1>How the World Could End</h1>
</header>
<div class="Content">

<h2>Mayan Doomsday</h2>

68 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE HTML5

<h2>Robot Takeover</h2> OUTLINING
SYSTEM

<h2>Unexplained Singularity</h2>
<h2>Runaway Climate Change</h2>
<h2>Global Epidemic</h2>
</div>

</article>

<footer>

</footer>

</body>

Plug this into an outline viewer like http.//gsnedders.html5.org/outliner, and you'll
see this:

1. Untitled Section
1. How the World Could End
1. Mayan Doomsday
2. Robot Takeover
3. Unexplained Singularity
4. Runaway Climate Change
5. Global Epidemic

Here, the outline starts with an untitled section, which is the root <body> element.
The <article> element starts a new, nested outline, which contains a single <h1>
and several <h2> elements.

Sometimes, the “Untitled Section” note indicates a mistake. Although it’s considered
acceptable for <aside> and <nav> elements to exist without titles, the same leniency
isn’t usually given to <article> or <section> elements. In the previous example,
the untitled section is the main section for the page, which belongs to the <body>
element. Because the page contains a single article, there’s no reason for the page
to have a separate heading, and you can ignore this quirk.

Now consider what happens with a more complex example, like the apocalypse
site with the navigation sidebar (page 54). Put that through an outliner, and you’ll
get this outline:

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 69

www.it-ebooks.info

al Library

THE HTMLS
OUTLINING 1. Apocalypse Today
SYSTEM
1. Untitled Section
1. Articles
2. About Us

2. How the World Could End
1. Mayan Doomsday
2. Robot Takeover
3. Untitled Section
4. Unexplained Singularity
5. Runaway Climate Change
6. Global Epidemic

Here, there are two sectioning elements, and two nested outlines: one for the side-
bar and one for the article. There are also two untitled sections, both of which are
legitimate. The first is the <aside> element for the sidebar, and the second is the
<aside> element that represents the pull-quote in the article.

In addition to sectioning elements, some elements are called section roots. These elements aren’t
just branches of an existing outline; they start a new outline of their own that doesn’t appear in the main outline
of the containing page. The <body> element that contains your weh page content is a sectioning root, which
makes sense. But HTMLS also considers the following elements to be sectioning roots: <blockquote>, <td>,
<fieldset>, <figure>,and <details>.

Solving an Outline Problem

So far, you've looked at the examples in this chapter and seen the outlines they
generated. And so far, the outlines have made perfect sense. But sometimes, a
problem can occur. For example, imagine you create a document with this structure:

<body>
<article>
<h1>Natural Wonders to Visit Before You Die</h1>
<h2>In North America</h2>
<h3>The Grand Canyon</h3>
<h3>Yellowstone National Park</h3>

<h2>In the Rest of the World</h2>

<aside>...</aside>

70 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE HTML5
OUTLINING

<h3>Galapagos Islands</h3>
<h3>The Swiss Alps</h3>

</article>
</body>

GEM IN THE ROUGH

SYSTEM

Sectioning is a great help with syndicationand aggregation—
two examples of the fine art of taking content from one web
page and injecting it into another.

For example, imagine you have a web page that includes
excerpts from several articles, all of which are drawn from
other sites. Now imagine that this page has a deeply nested
structure of headings, and somewhere inside—let’s say under
an <h4> heading—there’s an article with content pulled from
another web page.

In traditional HTML, you’d like the first heading in this content to
use the <h5> element, because it’s nested under an <h4>. But
this article was originally developed to be placed somewhere
else, on a different page, with less nesting, so it probably
starts with an <h2> or an <h1>. The page would still work,
but its hierarchy would be scrambled, and the page could be

How Sectioning Elements Help Complex Pages

more difficult for screen readers, search engines, and other
software to process.

In HTML5, this page isn’t a problem. As long as you wrap the
nested article in an <article> element, the extracted
content becomes part of its own nested outline. That outline
can start with any heading—it doesn’t matter. What matters is
its positionin the containing document. So if the <article>
element falls after an <h4>, then the first level of heading in
that article behaves like a logical <h5>, the second level acts
like a logical <h6>, and so on.

The conclusion is this: HTML5 has a logical outline system that
makes it easier to combine documents. In this outline system,
the position of your headings becomes more important, and
the exact level of each heading becomes less significant—mak-
ing it harder to shoot yourself in the foot.

You probably expect an outline like this:
1. Untitled Section for the <body>
1. Natural Wonders to Visit Before You Die

1. In North America
1. The Grand Canyon
2. Yellowstone National Park

2. In the Rest of the World

3. Untitled Section for the <aside>
1. Galapagos Islands

2. The Swiss Alps

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS

www.it-ebooks.info

71

al Library

THE HTMLS
OUTLINING
SYSTEM

But the outline you actually get is this:

1. Untitled Section for the <body>
1. Natural Wonders to Visit Before You Die
1. In North America
1. The Grand Canyon
2. Yellowstone National Park
2. In the Rest of the World
3. Untitled Section for the <aside>
4. Galapagos Islands
5. The Swiss Alps

Somehow, the addition of the <aside> after the <h2> throws off the following <h3>
elements, making them have the same logical level as the <h2>. This clearly isn’t
what you want.

To solve this problem, you first need to understand that the HTML5 outline system
automatically creates a new section every time it finds a numbered heading element
(like <h1>,<h2>,<h3>, and so on), unless that element is already at the top of a section.

In this example, the outline system doesn’t do anything to the initial <h1> element,
because it’s at the top of the <article> section. But the outline algorithm does
create new sections for the <h2> and <h3> elements that follow. It’s as though you
wrote this markup:

<body>
<article>
<h1>Natural Wonders to Visit Before You Die</h1>

<section>
<h2>In North America</h2>

<section>
<h3>The Grand Canyon</h3>

</section>
<section>
<h3>Yellowstone National Park</h3>

</section>
</section>

72 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE HTML5
<section> OUTLINING

<h2>In the Rest of the World</h2> SYSTEM

</section>
<aside>...</aside>

<section>
<h3>Galapagos Islands</h3>

</section>
<section>
<h3>The Swiss Alps</h3>

</section>
</article>
</body>

Most of the time, these automatically created sections aren’t a problem. In fact,
they’re usually an asset, because they make sure incorrectly numbered headings are
still placed in the right outline level. The cost for this convenience is an occasional
glitch, like the one shown here.

As you can see in this listing, everything goes right at first. The top <h1> is left alone
(becauseit’sinan<article> already), there’s a subsection created for the first <h2>,
then a subsection for each <h3> inside, and so on. The problem starts when the
outline algorithm runs into the <aside> element. It sees this as a cue to close the
current section, which means that when the sections are created for the following
<h3> elements, they’re at the same logical level as the <h2> elements before.

To correct this problem, you need to take control of the sections and subsections by
defining some yourself. In this example, the goal is to prevent the second <h2> section
from being closed too early, which you can do by defining it explicitly in the markup:

<body>
<article>
<h1>Natural Wonders to Visit Before You Die</h1>
<h2>In North America</h2>
<h3>The Grand Canyon</h3>

<h3>Yellowstone National Park</h3>

<section>
<h2>In the Rest of the World</h2>

<aside>...</aside>

CHAPTER 2: STRUCTURING PAGES WITH SEMANTIC ELEMENTS 73

www.it-ebooks.info

THE HTMLS
OUTLINING
SYSTEM

<h3>Galapagos Islands</h3>
<h3>The Swiss Alps</h3>

</section>
</article>
</body>

Now, the outline algorithm doesn’t need to create an automatic section for the sec-
ond <h2>, and so there’s no risk of it closing the section when it stumbles across the
<aside>. Although you could define the section for every heading in this document,
there’s no need to clutter your markup, as this single change fixes the problem.

AR Another solution is to replace the <aside> witha <div>.The <div> is not a sectioning element,
S0 it won’t cause a section to close unexpectedly.

Using the <aside> element doesn’t always cause this problem. The earlier article
examples used the <aside> element for a pull-quote but worked fine, because the
<aside> fell between two <h2> elements. But if you carelessly plunk a sectioning
element between two different heading levels, you should check your outline to
make sure it still makes sense.

L ¢ the whole outline concept seems overwhelmingly theoretical, don’t worry. Truthfully, it’s a subtle
concept that many web developers will ignore (at least for now). The best approach is to think of the HTML5
outlining system as a quality assurance tool that can help you out. If you review your pages in an outline generator
(like one of the tools listed on page 65), you can catch mistakes that may indicate other problems and make sure
that you’re using the semantic elements correctly.

74

HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

CHAPTER

3

Writing More
Meaningful Markup

n the previous chapter, you met HTML5’s semantic elements. With their help, you
can give your pages a clean, logical structure and prepare for a future of super-
smart browsers, search engines, and assistive devices.

But you haven’t reached the end of the semantic story yet. Semantics are all about
adding meaning to your markup, and there are several types of information you
can inject. In Chapter 2, semantics were all about page structure—you used them
to explain the purpose of large blocks of content and entire sections of your layout.
But semantics can also include text-level information, which you add to explain much
smaller pieces of content. You can use text-level semantics to point out important
types of information that would otherwise be lost in a sea of web page content, like
names, addresses, event listings, products, recipes, restaurant reviews, and so on.
Then this content can be extracted and used by a host of different services—every-
thing from nifty browser plug-ins to specialized search engines.

In this chapter, you’ll start by returning to the small set of semantic elements that are
built into the HTML5 language. You'll learn about a few text-level semantic elements
that you can use today, effortlessly. Next, you’ll look at the companion standards that
tackle text-level semantics head-on. That means digging into microdata, which began
its life as part of the original HTML5 specification but now lives on as a separate,
still-evolving standard managed by the W3C. Using microdata, you’ll learn how to
enrich your pages and juice up your web search listings.

75

www.it-ebooks.info

al Library

THE SEMANTIC
ELEMENTS
REVISITED

B The Semantic Elements Revisited

There’s a reason you began your exploration into semantics with the page structure
elements (see Table 3-1 for a recap). Quite simply, page structure is an easy chal-
lenge. That’s because the vast majority of websites use a small set of common design
elements (headers, footers, sidebars, and menus) to create layouts that are—for all
their cosmetic differences—very similar.

TABLE 3-1 Semantic elements for page structure

ELEMENT DESCRIPTION

<article> Represents whatever you think of as an article—a
section of self-contained content like a newspaper
article, a forum post, or a blog entry (not including
frills like comments or the author bio).

<aside> Represents a complete chunk of content that’s
separate from the main page content. For example, it
makes sense to use <aside> to create a sidebar with
related content or links next to a main article.

<figure> and <figcaption> Represents a figure. The <figcaption> element wraps
the caption text, and the <figure> element wraps the
<figcaption> and the element for the picture
itself. The goal is to indicate the association between
an image and its caption.

<footer> Represents the footer at the bottom of the page.
This is a tiny chunk of content that may include small
print, a copyright notice, and a brief set of links (for
example, “About Us” or “Get Support”).

<header> Represents an enhanced heading that includes a
standard HTML heading and extra content. The extra
content might include a logo, a byline, or a set of
navigation links for the content that follows.

<nav> Represents a significant collection of links on a page.
These links may point to topics on the current page or
to other pages on the website. In fact, it’s not unusual
to have a page with multiple <nav> sections.

<section> Represents a section of a document or a group of
documents. The <section> is an all-purpose container
with a single rule: The content it holds should begin
with a heading. Use <section> only if the other
semantic elements (for example, <article> and
<aside>) don’t apply.

<main> Represents the main content of the page—all of it. For
example, <main> might wrap an <article> element
but leave out site-wide headers, footers, and sidebars.
The <main> element is a new addition to the HTML 5.1
revision of HTML5 (page xv).

76 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE SEMANTIC
ELEMENTS
REVISITED

Text-level semantics are a tougher nut to crack. That’s because people use a huge
number of different types of content. If HTML5 set out to create an element for
every sort of information you might add to a page, the language would be swim-
ming in a mess of elements. Complicating the problem is the fact that structured
information is also made of smaller pieces that can be assembled in different ways.
For example, even an ordinary postal address would require a handful of elements
(like <address>, <name>, <street>, <postalcode>, <country>, and so on) before
anyone could use it in a page.

HTML5 takes a two-pronged approach. First, it adds a very small number of text-
level semantic elements. But second, and more importantly, HTML5 supports a
separate microdata standard, which gives people an extensible way to define any
sort of information they want and then flag it in their pages. You'll cover both of
these topics in this chapter. First up are three new text-level semantic elements:
<time>, <output>, and <mark>.

Dates and Times with <time>

Date and time information appears frequently in web pages. For example, it turns
up at the end of most blog postings. Unfortunately, there’s no standardized way to
tag dates, so there’s no easy way for other programs (like search engines) to extract
them without guessing. The <time> element solves this problem. It allows you to
mark up a date, time, or combined date and time. Here’s an example:

The party starts <time>2014-03-21</time>.

NOTE It may seem a little counterintuitive to have a <time> element wrapping a date (with no time),
but that’s just one of the quirks of HTML5. A more sensible element name would be <datetime>, but thatisn’t
what they chose.

The <time> element performs two roles. First, it indicates where a date or time
value is in your markup. Second, it provides that date or time value in a form that
any software program can understand. The previous example meets the second
requirement using the universal date format, which includes a four-digit year, a
two-digit month, and a two-digit day, in that order, with each piece separated by a
dash. In other words, the format follows this pattern:

YYYY-MM-DD

However, it’s perfectly acceptable to present the date in a different way to the person
reading your web page. In fact, you can use whatever text you want, as long as you
supply the computer-readable universal date with the datetime attribute, like this:

The party starts <time datetime="2014-03-21">March 21st</time>.
Which looks like this in the browser:

The party starts March 21t

CHAPTER 3: WRITING MORE MEANINGFUL MARKUP 77

www.it-ebooks.info

al Library

THE SEMANTIC

ELEMENTS The <time> element has similar rules about times, which you supply in this format:
REVISITED

HH: MM

That’s a two-digit hour (using a 24-hour clock), followed by a two-digit number of
minutes, like this:

Parties start every night at <time datetime="16:30">4:30 p.m.</time>.

Finally, you can specify a time on a specific date by combining these two standards.
Just put the date first, followed by a space, and then the time information.

The party starts <time datetime="2014-03-21 16:30">March 21st
at 4:30 p.m.</time>.

NOTE Originally, the <time> element required a slightly different format to combine date and time infor-
mation. Instead of separating the two components with a space, you had to separate them with an uppercase 7
(for time), asin 2014-03-21T16:30. This format is still acceptable, so you may encounter it while perusing
other people’s web pages.

When combining dates and times, you may choose to tack a time zone offset on the
end. For example, New York is in the Eastern time zone, which is known as UTC-5:00.
(You can figure out your time zone at http://en.wikipedia.org/wiki/Time_zone.) To
indicate 4:30 p.m. in New York, you’d use this markup:

The party starts <time datetime="2014-03-21 16:30-05:00">March 21st
at 4:30 p.m.</time>.

This way, the people reading your page get the time in the format they expect,
while search bots and other bits of software get an unambiguous datetime value
that they can process.

The <time> element also supports a pubdate attribute. You should use this if your
date corresponds to the publication date of the current content (for example, the
<article> in which the <time> is placed). Here’s an example:

Published on <time datetime="2014-03-21" pubdate>March 31, 2014</time>.

NOTE Because the <time> element is purely informational and doesn’t have any associated formatting,
you can use it with any browser. There are no compatibility issues to worry about. But if you want to style the
<time> element, you need the Internet Explorer workaround described on page 51.

JavaScript Calculations with <output>

HTMLS5 includes one semantic element that’s designed to make certain types of
JavaScript-powered pages a bit clearer—the <output> element. It’s nothing more
than a placeholder that your code can use to show a piece of calculated information.

78 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

For example, imagine you create a page like the one shown in Figure 3-1. This figure
lets the user enter some information. A script then takes this information, performs

a calculation, and displays the result just underneath.

THE SEMANTIC
ELEMENTS
REVISITED

/ - [E=EER™ FIGURE 3-1
Ml Ll + \) It’s a time-honored web design pattern. Type some num-
C' Q@ BmiCalculator.htm X bers, click a button, and let the page give you the answer.

Body Mass Index Calculator

Height: |7 | feet

|1 | inches

Weight: 230 | pounds
Your BMI: 22 4

BMI Weight Status

Below 18.5 Underweight

185-249 Normal

250-299 Overweight

30.0 and Above | Obese

The usual way of dealing with this is to assign a unique ID to the placeholder, so
the JavaScript code can find it when it performs the calculation. Typically, web
developers use the element, which works perfectly but doesn’t provide any
specific meaning:

<p>Your BMI: </p>
Here’s the more meaningful version you’d use in HTML5:
<p>Your BMI: <output id="result"></output></p>

The actual JavaScript code doesn’t need any changes, because it looks up the ele-
ment by name and doesn’t care about the element type:

var resultElement = document.getElementById("result");

WSS Before you use <output>, make sure you've included the Internet Explorer workaround described
on page 51. Otherwise, the element won’t be accessible in JavaScript on old versions of Internet Explorer (IE 8
and earlier).

CHAPTER 3: WRITING MORE MEANINGFUL MARKUP 79

www.it-ebooks.info

al Library

THE SEMANTIC
ELEMENTS Often, this sort of page has its controls inside a <form> element. In this example,

REVISITED that’s the three text boxes where people can type in information:

<form action="#" id="bmiCalculator">
<label for="feet inches">Height:</label>
<input name="feet"> feet

<input name="inches"> inches

<label for="pounds">Weight:</label>
<input name="pounds"> pounds

</form>
If you want to make your <output> element look even smarter, you can add the
form attribute (which indicates the ID of the form that has the related controls) and

the for attribute (which lists the IDs of the related controls, separated by spaces).
Here’s an example:

<p>Your BMI: <output id="result" form="bmiCalculator"for="feet inches pounds">
</output></p>

These attributes don’t actually do anything, other than convey information about
where your <output> element gets its goods. But they will earn you some serious
semantic brownie points. And if other people need to edit your page, these attributes
could help them sort out how it works.

TIP T you’re a bit hazy about forms, you’ll learn more in Chapter 4. If you know more about Esperanto than
JavaScript, you can brush up on the programming language in Appendix B, “JavaScript: The Brains of Your Page.”
And if you want to try this page out for yourself, you can find the complete example at http://prosetech.com/
html5.

Highlighted Text with <mark>

The <mark> element represents a section of text that’s highlighted for reference. It’s
particularly appropriate when you’re quoting someone else’s text and you want to
bring attention to something:

<p>In 2009, Facebook made a bold grab to own everyone's content,
forever. This is the text they put in their terms of service:</p>
<blockquote>You hereby grant Facebook an <mark>irrevocable, perpetual,
non-exclusive, transferable, fully paid, worldwide license</mark> (with the
right to sublicense) to <mark>use, copy, publish</mark>, stream, store,
retain, publicly perform or display, transmit, scan, reformat, modify, edit,
frame, translate, excerpt, adapt, create derivative works and distribute
(through multiple tiers), <mark>any user content you post</mark>

</blockquote>

80 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

THE SEMANTIC

ELEMENTS
The text in a <mark> element gets the yellow background shown in Figure 3-2. REVISITED

g l=|EWS8| FIGURE 3-2
" 2] mark.html P X |l & <mark> Example X {nr vy & Here, the <mark> ele-

- ment highlights important
In 2009, Facebook made a bold grab to own everyone's content, forever. This 1s the text B details in a block of quoted

they put in their terms of service:

text.

You hereby grant Facebook an irrevocable. perpetual. non-exclusive,
transferable. fully paid. worldwide license (with the right to sublicense) to use,
copy. publish, stream, store, retain, publicly perform or display, transmit, scan,
reformat, modify, edit, frame. translate, excerpt, adapt. create derivative works
and distribute (through multiple tiers), any user content you post on or in
connection with the Facebook Service or the promotion thereof subject only to
vour privacy settings or enable a user to post.

m

Fortunately, they've since backtracked and weakened the language considerably. Here's the
relevant section today:

You own all of the content and information you post on Facebook, and yvou can
control how it 1s shared through vour privacy and application settings. In
addition: 1. For content that is covered by intellectual property rights, like
photos and videos ("IP content"), you specifically give us the following
permission, subject to vour privacy and application settings: you grant us a non-
exclusive, transferable, sub-licensable, rovalty-free, worldwide license to use
any content that vou post on or in connection with Facebook. This license ends
when you delete vour content or your account unless your content has been
shared with others, and they have not deleted it.

You can also use <mark> to flag important content or keywords, as search engines
do when showing matching text in your search results, or to mark up document
changes, in combination with (for deleted text) and <ins> (for inserted text).

Truthfully, the <mark> element is a bit of a misfit. The HTML5 specification considers
it to be a semantic element, but it plays a presentational role that’s arguably more
important. By default, marked-up text is highlighted with a bright yellow background
(Figure 3-2), although you can apply your own style sheet rules to use a different
formatting effect.

UL The <mark> element isn’t really about formatting. After all, there are lots of ways to make text stand

out ina web page. Instead, you should use <mark> (coupled with any CSS formatting you like) when it’s semanti-
cally appropriate. A good rule of thumb is to use <mark> to draw attention to ordinary text that has hecome
important, either because of the discussion that frames it, or because of the task the user is performing.

Even if you stick with the default yellow-background formatting, you should add a
style sheet fallback for browsers that don’t support HTML5. Here’s the sort of style
rule you need:

CHAPTER 3: WRITING MORE MEANINGFUL MARKUP 81

www.it-ebooks.info

al Library
OTHER

STANDARDS

THAT BOOST mark {
SEMANTICS background-color: yellow;
color: black;

}

You’ll also need the Internet Explorer workaround described on page 51to make the
<mark> element style-able in old versions of IE.

B Other Standards That Boost Semantics

At this point, it’s probably occurring to you that there are a lot of potential semantic
elements that HTML doesn’t have. Sure, you can flag dates and highlighted text,
but what about other common bits of information, like names, addresses, business
listings, product descriptions, personal profiles, and so on? HTML5 deliberately
doesn’t wade into this arena, because its creators didn’t want to bog the language
down with dozens of specialized elements that would suit some people but leave
others bored and unimpressed. To really get to the next level with semantics, you
need to broaden your search beyond the core HTML5 language, and consider a few
standards that can work with your web pages.

Semantically smart markup isn’t a new idea. In fact, way back when HTML5 was
still just a fantasy in WHATWG editor lan Hickson’s head, there were plenty of web
developers clamoring for ways to make their markup more meaningful. Their goals
weren’t always the same—some wanted to boost accessibility, some were planning
to do data mining, and others just wanted to dial up the cool factor on their resumés.
But none of them could find what they wanted in the standard HTML language which
is why several new specifications sprung up to fill the gap.

In the following sections, you’ll learn about no fewer than four of these standards.
First, you’ll get the scoop on ARIA, a standard that’s all about improving accessibil-
ity for screen readers. Then, you’ll take a peek at three competing approaches for
describing different types of content, whether it’s contact details, addresses, business
listings, or just about anything else you can fit between the tags of an HTML page.

ARIA (Accessible Rich Internet Applications)

ARIA is a developing standard that lets you supply extra information for screen
readers through attributes on any HTML element. For example, ARIA introduces
the role attribute, which indicates the purpose of a given element. For example, if
you have a <div> that represents a header:

<div class="header">

You can announce that fact to screen readers by setting the ARIA role attribute
to banner:

<div class="header" role="banner">

82 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

OTHER

STANDARDS
Of course, you learned last chapter that HTML5 also gives you a more meaningful THAT BOOST

way to mark up headers. So what you really should use is something like this: SEMANTICS

<header role="banner">

This example demonstrates two important facts. First, ARIA requires you to use one
of a short list of recommended role names. (For the full list, refer to the appropriate
section of the specification at http://tinyurl.com/roles-aria.) Second, parts of ARIA
overlap the new HTML5 semantic elements—which makes sense, because ARIA pre-
dates HTML5. But the overlap isn’t complete. For example, some role names duplicate
HTML5 (like banner and article), while others go further (like toolbar and search).

ARIA also adds two attributes that work with HTML forms. The aria-required at-
tribute in a text box indicates that the user needs to enter a value. The aria-invalid
attribute in a text box indicates that the current value isn’t right. These attributes
are helpful, because screen readers are likely to miss the visual cues that sighted
users rely on, like an asterisk next to a missing field, or a flashing red error icon.

In order to apply ARIA properly, you need to learn the standard and spend some time
reviewing your markup. Web developers are divided over whether it’s a worthwhile
investment, given that the standard is still developing and that HTML5 provides
some of the same benefits with less trouble. However, if you want to create a truly
accessible website today, you need to use both, because newer screen readers sup-
port ARIA but not yet HTMLS5.

NOTE For more information about ARIA (fully known as WAI-ARIA, because it was developed by the Web
Accessibility Initiative group), you can read the specification at www.w3.org/TR/wai-aria.

RDFa (Resource Description Framework)

RDFa is a standard for embedding detailed metadata into your web documents
using attributes. RDFa has a significant advantage: Unlike the other approaches
discussed in this chapter, it’s a stable, settled standard. RDFa also has two significant
drawbacks. First, RDFa was originally designed for XHTML, not HTML5. It’s a matter
of debate how well the stricter, more elaborate RDFa syntax meshes with the more
freewheeling philosophy of HTML5. Second, RDFa is complicated. Markup that’s
augmented with RDFa metadata is significantly longer and more cumbersome than
ordinary HTML. And because of its complexity, RDFa is also more likely to contain
errors—three times more likely, according to a recent Google web page survey.

RDFa isn’t discussed in this chapter, although you will dig into its close HTML5 rela-
tive, microdata, on page 85. But if you prefer to learn more about RDFa, you can
get a solid introduction on Wikipedia at http://en.wikipedia.org/wiki/RDFa, or you
can visit the Google Rich Snippets page described later (page 94), which has RDFa
versions of all its examples.

CHAPTER 3: WRITING MORE MEANINGFUL MARKUP 83

www.it-ebooks.info

al Library
OTHER

STANDARDS
THAT BOOST Microformats

SEMANTICS

Microformats are a simple, streamlined approach to putting metadata in your pages.
Microformats don’t attempt to be any sort of official standard. Instead, they’re a loose
collection of agreed-upon conventions that let pages share structured information
without requiring the complexities of something like RDFa. This approach has given
microformats tremendous success, and a recent web survey found that when a page
has some sort of rich metadata, it’s microformats 70 percent of the time.

Microformats work in an interesting way—they piggyback on the class attribute
that’s usually used for styling. You mark up your data using certain standardized style
names, depending on the type of data. Then, another program can read your markup,
extract the data, and check the attributes to figure out what everything means.

For example, you can use the hCard microformat to represent the contact details
for a person, company, organization, or place. The first step is to add a root element
that has the right class name. For hCard, the class name is vcard. (Usually, the class
name matches the name of the microformat. The name vcard was chosen for histori-
cal reasons, because hCards are based on a much older format called Versitcard.)

Here’s an example of a <div> that’s ready to hold contact details using the hCard
microformat:

<div class="vcard">
</div>

Inside this root element, you supply the contact information. Each detail must be
wrapped in a separate element and marked up with the correct class name, as
defined by the microformat you’re using. For example, in an hCard you can use the
fn class to flag a person’s full name and the url class for that person’s home page:

<div class="vcard">
<h3 class="fn">Mike Rowe</h3>
You can see Mike Rowe's website at
www.magicsemantics.com
<Ja>
</div>

When you use class names for a microformat, you don’t need to create matching
styles in your style sheet. In the example above, that means that you don’t need to
write style rules for the vcard, fn, or url classes. Instead, the class names are put
to a different use—advertising your data as a nicely structured, meaningful chunk
of content.

NOTE Before you can mark up any data, you need to choose the microformat you want to use. There are
only a few dozen microformats in widespread use, and most are still being tweaked and revised. You can see
what’s available and read detailed usage information about each microformat at http://microformats.org/wiki.
To learn more about hCard, surf straight to http://microformats.org/wiki/hCard.

84 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

OTHER

STANDARDS
Once you’ve worked your way around hCard, you’ll have no trouble understanding THAT BOOST

hCalendar, the world’s second-most-popular microformat. Using hCalendar, you SEMANTICS

can mark up appointments, meetings, holidays, product releases, store openings,
and so on. Just wrap the event listing in an element with the class name vevent.
Inside, you need at least two pieces of information: the start date (marked up with
the dt-start class) and a description (marked up with the summary class). You can also
choose from a variety of optional attributes described at http://microformats.org/
wiki/hCalendar, including an ending date or duration, a location, and a URL with
more details. Here’s an example:

<div class="vevent">

<h2 class="summary">Web Developer Clam Bake</h2>

<p>I'm hosting a party!</p>

<p>It's

Tuesday, October 25,

1:30PM

at the Deep Sea Hotel, San Francisco, CA</p>
</div>

Based on the popularity of microformats, you might assume that the battle for the
Semantic Web is settled. But not so fast—there are several caveats. First, the vast
majority of pages have no rich semantic data at all. Second, most of the pages that
have adopted microformats use them for just two purposes: contact information
and event listings. So although microformats aren’t going anywhere soon, there’s
still plenty of space for the competition. Third, the climate is beginning to shift to
the more flexible but still lesser-known microdata specification. It seems increas-
ingly likely that microformats were an interim stopping point on the way to the more
sophisticated microdata standard, which is described in the next section.

Microdata

Microdata is a third take at solving the challenge of semantic markup. It began life
as part of the HTML5 specification and later split into its own developing standard
at http://dev.w3.org/html5/md. Microdata uses an approach that’s similar to RDFa’s,
but simpler. Unlike microformats, microdata uses its own attributes and doesn’t risk
colliding with style sheet rules (or confusing the heck out of other web developers).
This design means microdata is more logical, as well as easier to adapt for your own
custom languages. But it also comes at the cost of brevity—microdata-enriched
markup can bloat up a bit more than microformat-enriched markup.

Recently, microdata received a big boost when Microsoft, Google, Yahoo, and Yandex
(Russia’s largest search engine) teamed up to create a microdata-cataloguing site
called http://schema.org. Here you'll find examples of all sorts of different microdata
formats, including Person and Event (which echo the popular hCard and hEvent
microformats) and more specialized types for marking up businesses, restaurants,
reviews, products, books, movies, recipes, TV shows, bus stops, tourist attractions,
medical conditions, medications, and more. Right now, only search engines pay any

CHAPTER 3: WRITING MORE MEANINGFUL MARKUP 85

www.it-ebooks.info

al Library
OTHER

STANDARDS
THAT BOOST
SEMANTICS

attention to this information, but their traffic-driving, web-shaping clout is undeni-
able. (You'll see how search engines use this sort of information starting on page 94.)

NOTE It now seems possible that microdata just might catch on as the Goldilocks standard for metadata—a
specification that’s more flexible than microformats but not quite as complex as RDFa.

To begin a microdata section, you add the itemscope and itemtype attributes to any
element (although a <div> makes a logical container, if you don’t have one already).
The itemscope attribute indicates that you’re starting a new chunk of semantic
content. The itemtype attribute indicates the specific type of data you're encoding:

<div itemscope itemtype="http://schema.org/Person">
</div>

To identify the data type, you use a predetermined, unique piece of text called an
XML namespace. In this example, the XML namespace is http://schema.org/Person,
which is a standardized microdata format for encoding contact details, as discussed
in the box below.

UP TO SPEED

Understanding Microdata Namespaces

Every microdata format needs a namespace. Technically, the
namespace identifies the vocabulary your microdata uses. For
example, the namespace http://schema.org/Personindicates
that this section of markup uses the Person vocabulary. You
can go cross-eyed exploring dozens of microdata vocabularies
at http://schema.org (see Figure 3-3).

XML namespaces are often URLs. Sometimes, you can even
find a description of the corresponding data type by typing
the URL into your web browser (as you can with the http:/
schema.org/Person data format). However, XML namespaces
don’t need to correlate to real web locations, and they don’t
need to be URLs at all. It just depends on what the developer
chose when creating the format. The advantage of a URL is

that it can incorporate a domain name belonging to a person
or organization. This way, the namespace is more likely to be
unique—no one else will create a different data format that
shares the same namespace name and confuses everyone.

If a namespace begins with http://schema.org, it’s an official
vocabulary endorsed by the search engine dream team of
Microsoft, Google, Yahoo, and Yandex. So if you use that
vocabulary, you can be confident that the search engines of
the world will understand what you’re doing. If a namespace
begins with http://data-vocabulary.org, it’s using a slightly
older set of microdata vocabularies. Most search engines will
still understand your markup, but it’s better to stick with the
times and find an equivalent vocabulary at http://schema.org.

Once you have the container element, you’re ready to move on to the next step. Inside
your container element, you use the itemprop attribute to capture the important bits
of information. The basic approach is the same as it was for microformats—you use
arecognized itemprop name, and other pieces of software can grab the information
from the associated elements.

86 HTMLS5: THE MISSING MANUAL, SECOND EDITION

www.it-ebooks.info

(c) ketabton.com: The Digital Library

OTHER

STANDARDS

Here’s a microdata-fied version of the hCard microformat you saw earlier: THAT BOOST
SEMANTICS

<div itemscope itemtype="http://schema.org/Person">
<h3 itemprop="name">Mike Rowe</h3>
You can see Mike Rowe’s website at
www.magicsemantics.
com
</div>

- oM FiGure 3-3

To find a microdata
vocabulary that suits your
information, there are

few better starting points
than the http://schema.
Home (SRS Documeniation org/docs/schemas.html
page. (lick a link to jump
straight to the definition of

y [") Schemas - schema.org % \ N

€« > c |5 schema.org/docs/schemas.htm ?;? =

schema.org

Organization of Schemas a common vocabulary, like
Person, Organization, or

The schemas are a set of types’, each associated with a set of properties. The types are arranged in a Event. Orr browse mngh

hierarchy the sprawling catalog by
clicking the “Full list of

Browse the full hierarchy

types” link.

Or you can jump directly to a commonly used type

* Creative works: CreativeWork, Book, Movie, MusicRecording, Recipe, TVSeries

Embedded non-text objects: AudioObject, ImageObject, VideoObject

Event
Health and medical types: notes on the health and medical types under MedicalEntity
Organization

.
.
.
.
+ Person
.
.
.

The most significant difference between microdata and microformats is that micro-
data uses the itemprop attribute to mark up elements instead of the class attribute.

WAME Since microdata uses its own itemscope, itemtype,and itemprop attributes, rather than the
class attribute, there’s no chance you’ll confuse your semantic markup with your style sheet formatting.

There are plenty of additional details you can mark up using the Person vocabulary.
Common choices include postal and email address, telephone number, birth date,
photo, job title, organization name, gender, nationality, and so on. For the full list of
possible properties, refer to http://schema.org/Person.

CHAPTER 3: WRITING MORE MEANINGFUL MARKUP 87

www.it-ebooks.info

al Library
A PRACTICAL

EXAMPLE:

RETROFITTING
AN “ABOUT NOTE
ME” PAGE

The three standards for rich semantic data—RDFa, microdata, and microformats—all share broad
similarities. They aren’t quite compatible, but the markup is similar enough that the skills you pick up learning
one system are mostly applicable to the others.

M A Practical Example: Retrofitting an “About
Me” Page

So far, you’ve learned about the basic structure of two semantic staples: microformats
and microdata. Armed with this knowledge, you could look up a new microformat
(from http://microformats.org) or microdata vocabulary (from http://schema.org)
and start writing semantically rich markup.

However, life doesn’t usually unfold this way—at least not for most web developers.
Instead, you'll often need to take a web page that already has all the data it needs
and retrofit the page with semantic data. This task is fairly easy if you keep a few
points in mind:

» Often, you’ll have important data mixed in with content that you want to ignore.
In this case, you can add new elements around each piece of information you
want to capture. Use a <div> if you want a block-level element or a if
you want to get a piece of inline content.

» Don’t worry about the order of your information. As long as you use the right
class names (for a microformat) or property names (for microdata), you can
arrange your markup however you wish.

+ If you're supplying a picture, you can use the element. If you’re supply-
ing a link, you can use the <a> element. The rest of the time, you’ll usually be
marking up ordinary text.

He