Java

for Absolute

Beginners
Ketaptomeom

luliana Cosmina

Apress:

Java for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way

luliana Cosmina

Apress’

(c) ketabton.com: The Digital Library

Java for Absolute Beginners: Learn to Program the Fundamentals the Java 9+ Way

Tuliana Cosmina
Edinburgh, UK

ISBN-13 (pbk): 978-1-4842-3777-9 ISBN-13 (electronic): 978-1-4842-3778-6
https://doi.org/10.1007/978-1-4842-3778-6

Library of Congress Control Number: 2018964482

Copyright © 2018 by Iuliana Cosmina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237779. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

(c) ketabton.com: The Digital Library

This book is dedicated to all men that told me
software engineering is not for women.

And to that one professor that told me I'm not PhD material.
How do ya’ like them apples?

(c) ketabton.com: The Digital Library

Table of Contents

About the AUROFccccseemmssmsmnsmsssssssssss s nn s nnnnnn s xiii
About the Technical REVIEWETcccccursssmsmsssansssssnsmssnsmsssssssssnsssssnsssssnsssssnsssssnsssssns XV
AcknNoWIedgmentsccccuuseenmimssssnnnmsssssssnsssssssnnssssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
INtroductioncciccemmsemnsssnnnssssnnmsssnnsssanssssannssssnnssssnnssssnnssssnnssssnnssssnnsnssnnnnssnnnnssnnnns Xix
Chapter 1: An Introduction to Java and Its HiStoryccummmnnsennnmnssssnsnnnsssssnnnnns 1
WHO ThiS BOOK IS FOF ..o 2
How This BOOK IS STrUCLUIEA...........coeeeecrereireseeec s se s 3
CONVENTIONS ... sesese s s esss e s s e s s e se e e s R e e e e e e e ae e s re e e e e e nnnnnes 4
When Java Was Owned by Sun MICroSYSEEMS........c.cuecverererenesnsesenesessse s sessesessesessnns 5
Why IS Java POrabIE?ccvirerinininenens st s s s s 8

Sun Microsystem’s Java VEISIONScocveeverenmrrssesrnsesssesesssesessessssssssssesessssssssssssssessssesenns 10
Oracle TAKES QVENccoveerireiricserree s r e g p e n s 15
What the FUtUre HoldS ... s 21

o (] (0 [T (< 21
Chapter 2: Preparing Your Development Environmentccccoccemnnnnsnnnnssssssssnnnns 23
INSTAIIING JAVA.......coeirc e e 24
The JAVA_HOME Environment Variable........cccccuciiiiiiiiniininisssssssssssssssssssssssssssssssens 29
JAVA _HOME 0N WINAOWSueiiiiiiiiiiiisiesinnsssssssssssssssssssssssssssssssssssansssnsssnssssssssssssssassssnssananes 30
JAVA_HOME 0N MACOS.... ...t ssss s s s ss s s s ss s s s s s ss s sn s san s s s sanasananns 35
JAVA_HOME 0N LINUX c.vuervrcreeseesresesesesessesessssesessesessssesssssssssssssssssssssssssssnsssssssssssssssssssssssssnns 36
INSTAIING GIAUIEcveeeveerereeree e nr s 37
INSTAIING GIL.....veeeeeecerreserne e e e e n s 38
INSEAIlNG @ JAVA IDE..........coeeiiecircere st se e s s s e e s ae s p e e naennen 39

£ 11114 7R 47

(c) ketabton.com: The Digital Library

TABLE OF CONTENTS
Chapter 3: Getting Your Feet Wet.........cccccmrmnnnsemmmmnssssnnnmnsssssnmnsssssssssssssssnsssssssnssnss 49
LS T TS 11 S 49
Java Fundamental Building BIOCKScccoiininininnninsne st ssssessesnens 56
ACCESS MOGITIEIS ... r e r e se s e nnnne s 60
INtroducCing MOTUIES.......coiiirire e e e s r s e nne 64
Configuring MOUUIEScoevirrecesir e e e s r e sne 67
Determining the Structure: A Java Project ... sessessens 69
Explaining and Enriching the Hello WOrld! Class..........ccoverrererenernsesesesesesesessesesesessesesessesenns 89
SUMIMAIY ...ttt e R e e e e e e e Re e s R e e s e n e e nRe e Re e nen e nnnrnnn s 96
Chapter 4: Java SyNtaX......ccusscemsmmsssnnnmmssssnsnsessssnsnsssssssnnsessssnsnssssssnnnsssssnnnnsssssnnnnssss 99
Base Rules of Writing Java COUEccvverrererrnneriereresersese s sessessessessssessessessesessessessessssessessens 100
o T 16 1o T I L= T L 101
10 00T BT o 0 o O 101
JAVA “GraMMAI” ... s 103
JaVa [ABNTITIBrScivieccci e ————— 106
Java COMMENTES ... s 107
B AT 0 o] 1= B 1 T 107
02T 108
ENUMS . 125
INTEITACES ...cocvecicri s 129
(=] 0 0] SRR 139
C e 1] 1 PR 145
JaVva RESEIVEA WOIAS..........ccceeeeeererereec e ne e e nnenens 147
£ 10T 7 ST 151
Chapter 5: Data TYPeS....cccruusmmmmmmsssannnmsssssnsnmsssssnnnssssssnnsssssssnnsssssssnnnsssssnnnssssssnnnnss 153
Stack and Heap MEMOIY.......ccvvrererirrere et sse e e s e sae e sae s se s saesae e s e snesnes 153
Introduction 10 Java Data TYPEScceveririrrinne e s 159
Primitive Data TYPES ...cccveveririersie e re s s s a e s s a e s ae s 159
Reference Data TYPESccvvrvriirrerierer st re e s s s r e s ne s 161

(c) ketabton.com: The Digital Library

TABLE OF CONTENTS

JaVa PriMItIVE TYPES et s r e s s s s s 165
The BOOIEAN TYPE....coceiieerieririir et re e s a e s s a e s s e s n e s 165
THE CRAI TYPE ..o e s e e a e 166

10T T T=T g o 11 111 14T O 167
Real PrIMiItIVES.coviuicccsiririssre e s 170
JAVA RETEIENCE TYPES ..uveeerererriererer et r e r e s e e s s e e s e s s e s s sae s s e e a e sae s e e e e snesae e e e aesnesannaes 173
4 1S 177
LI (0T 1 L= 183
ESCAPING CAIACIEIS....ccceuerreerrerersererserersessssessessesaesessessesaesssessessessssessesaesssssssessesasssssensesaes 187
WEAPPET ClASSES...eruerverererersersesersersessessssessessessesssssssessesssssssessessesssssssessessessssessessesssssssessesses 189
DAte TIME AP ... 191
L0017 (0] 196
CONCUITENCY SPECITIC TYPES..eeruerrrrerrererressrsersersessesessessesaessssessessesseses e ssesaessssessessesssnsssesneses 201
31111117 OO S 206
Chapter 6: OPeratorsccccussesmmssssssnnmsssssnsnmssssssnnssssssnnnssssssnnnsssssnnnnessssnnnnessssnnnnss 207
The AsSIgNMENT OPEIAtOr (=) ...cccevererrererrnserrsesesrese s s e s e ses e ssssessesesessssssssnens 208
Explicit Type Conversion (type) and inStanCeof...........ccuceererernsernsesnneses e sessesens 211
0T TeT Ttz I 0] 0T = (0] £ OO S 214
L1 T 0 L] L (0 OO 214
3Ty Fe LT 0T (0] O 217
Relational OPerators. s e e 223
BitWiSe OPEIAtOrSccevereerieirere s et a e e nen 227
BItWiSe NOT ... e 227
BItWiISE ANDcoueiieirirere st s e b e e e a e e nan 228
BitwiSe INCIUSIVE OR.........cceeiieeircriree e 230
BitwiSe EXCIUSIVE QRcccceirierirresersse s srs s s sr e s s s sssss e nsnsis 231
LOGICAI OPEIALOFScveceevieriseerrese s b e nnna e nr s 233
Shift OPEIAIONSeeerere e e ae e e nne s 238
The EIVIS OPEIAtOrcccvvererisirsine sttt 241

£ 11134 R 242

vii

(c) ketabton.com: The Digital Library

TABLE OF CONTENTS
Chapter 7: Controlling the FIOWccccusseemnmnsssnmnmsssssssssssssssnssssssssnsssssssssssssssnnnnss 243
if-1SE STATBMENT ... s 244
SWITCH STAIEMENL ... e 250
LOOPING STAtEMENTS ..o 256
FOr SEALEMENTS ... e 257
WHIlE STAtEMENTcoeeeeee s e 263
do-While STAtEMENT...........cceeeereere s 268
Breaking Loops and SKipping SIEPS ..o 271
break STateMENt.........ccocvcriereree s 27
CONtINUE SALEMENT ..o s 273
return Statement ... ——————————— 275
Controlling the Flow Using try-catch COnStructionsc.ccovvevrnsrnnessnesensse s sesesenens 277
£ 1§14 RS 280
Chapter 8: The Stream APIccocccmmrnssssnmnmmmsssnnmmsssssnmmsssssemssssssssssse s 281
INtroduction t0 STrEAMScecceeerer s 281
Creating SIrEAMSccvciere e b e e e b e e nns 284
Creating Streams from CollECLIONS..........cccvcvvrieninn s s 284
Creating Streams frOM AITAYSccccveriennninsine s s 287
Creating EmpPty STreams.........ccoiriiininnsnsne s 289
Creating Finite STreams........ccciiicni s 289
Streams of Primitives and Streams of Strings ..o 292
A Short Introduction 10 Optional ..o ——————— 295
HOW 10 USE SIrBAMS......ceriecrircrerrenese e se e 298
Terminal Functions: forEach and forEachOrderedccoveerenresrnrcnerseserese s 300
Intermediate Operation filter and Terminal Operation t0Array..........cccccvierinrniniennsnsenens 302
Intermediate Operations map and flatMap and Terminal Operation collect................c...... 303
Intermediate Operation sorted and Terminal Operation findFirstc.cccovvnininiinicnnen 306
Intermediate Operation distinct and Terminal Operation count...........cccoceervnininninicnenn, 306
Intermediate Operation limit and Terminal Operations min and max..........c.cccceeevviensennenn 307
Terminal Operations SUM and rEUCE.........ccocererririeriere e s 307

viil

(c) ketabton.com: The Digital Library

TABLE OF CONTENTS
Intermediate OPeration PEEK........vvvvrerererrerreriereses s s s e s e s e sse s sassesnesae s 308
Intermediate Operation skip and Terminal Operations findAny, anyMatch,
allMatch, and NONEMALICH ... —————————— 309
Debugging SIream COEcccvrerriirne e e e 310
SUMIMANY ..t b e e e e b e e e e e e AR e e e e e R e Re A e e e e e Re R e e e e e Renrs 314
Chapter 9: Debugging, Testing, and Documenting.......ccccussssennmsssssnnnsssssnsnssssssnnnnss 317
(DL oo oo OSSR 317
T o 1 T P 318
Logging with SLF4J and LOghack..........cccceermrnrrnnenmnesernsssss s sessssessnnes 337
Debug USiNG ASSEITIONS........ccceererereeresserese s 345
Step-by-Step DEDUGGINGc.ccvrrererererrrerere e 348
Inspect Running Application Using Java TOOIS............cccvierninnnennnnsne e 351
Accessing the Java ProCeSS APl ... s s ssssessanes 362
5] (1o OO 369
A Small Introduction t0 TESTING......c.ccerererirernsesrne s sne e 370
TeSt COUE LOCALIONcovvuererreerreerinesesee e s se e se s srs e sr s snannns 371
ApPPLICALION 10 TESTcivecseireserree s sr e nre e 372
DOCUMENTING....cecerererteierere s rir s s a e e s s b e s e e s s s s e e e e e e ae s ae e e e saeeaese e e nannaees 397
£ 1§14 7R 408
Chapter 10: Making Your Application Interactive.......cccousssmmnrnssssnnnssssssnnsesssssnnnss 409
Reading Data from the Command LiNg ..o 409
Reading User Data USing SYSTEMLIN ..o 410
USING SCANNETcviereric et s e e e bbb e s 411
Reading User Data with java.io.CoNnSO0Ie...........ccocvvirirennnnsnie s 417
Build Applications USING SWINQ........ccoucrremrerenerrenernsesessesesese s sessesessssessesesessssessssesssssssssssenns 420
INtrOdUCING JAVAFXcveeiieceiresire e 432
Internationalization ... ———————————— 442
Build @ Web APPIICALIONccevveieriereresirrerere s sese s sresesse e saesessessessessssessessessesessessessesssssssesaens 450
£ 1134 7 468

ix

(c) ketabton.com: The Digital Library

TABLE OF CONTENTS
Chapter 11: Working with Filescccccuuseemmmmsssssnnmsssssssnmsssssssssssssssssssssssssssssssssnnss 471
L1303 140 47
Path HANIEES......c.eeeeeeeeeeecrr e 478
REAMING FIlES ...ceeereeereeeriecren et 482
Using Scanner 10 Read FilesS.........couovrererenernseserese s s seenes 482
Using Files Utility Methods t0 Read Filesccoverererrnsenenesesese s 484
Using Readers t0 Read Files..........cccvrenmrenrnscrncse e 485
Using InputStream t0 Read Filesc.ccccorerrrerrenerecrssesese e 489
WIING FIlBS ..uvveeriseerese e ne s ne e nnnne e 492
Writing Files Using Files Utility MEthodsccoveiresrnsnnesenese s sessesessenens 492
Using Writers 10 WHe FleScccvveernrereresernsesesese s s sessssessssesennes 495
Using OutputStream to Write Filesccccvverrrrnienenese s 499
Serialization and Deserialization...........c.ccvirrnnennesne s 502
Binary Serialization ... s 503
XML SeraliZation........cooveeeereneresesessesssesessse s sssse s s s s sssssssssesssssssssssesessssssenens 507
JSON Serialization..........ccveernsesnesennse e 511
THE MEIA AP ... bbb 513
UsSing JavaFX IMage ClASSESccvverrererrersersersnsersessessessssessessessssessessesssssssessessessssessessesssssssessens 526
£ 1134 7 529
Chapter 12: The Publish/Subscribe Framework...........ccccuunmsmemmmnmmmmsnsssssssssssssnnns 531
Reactive Programming and the Reactive Manifesto..........cccovvrrnnennnnnninsesnsesesseses e 532
Using the JDK Reactive Streams APl ... ssssesssssssssssesessssenns 536
Reactive Streams Technology Compatibility Kit........c.cccovvririennrnininnsrsense s sesenaens 548
R 10 g (0] (< A 21T T 0 SR 552
£ 1134 7 558
Chapter 13: Garbage Collection.........cccccvismrmssnmmsssnsmsssnsesssnssssssssssssssssssnssssansssnas 559
Garbage CollECion BASICSccocoerrrrerererereerenerese e s e ses s 560
Oracle Hotspot JUM ArchiteCture.........cccevvcrcreresnsne s se s 560
How Many Garbage Collectors Are THEIE?cccvvvrvrernnnsnse s s sessessesnes 564

(c) ketabton.com: The Digital Library

TABLE OF CONTENTS

Working wWith GC from the COUE.........ccccvrererrinirieresrr s sesse e s s s ssesessessessesesssssesseses 571
Using the finalize() Method..........cccovririinnrr e 571

Heap Memory STAtiSHCSccvvvievierriere s s e saesae e s saenaes 578
[T 108 1= T T O 584
Preventing GC from Deleting an ODJECtccvcvivvinini e enes 587
USING WEaK REFEIEINCEScuvverrerrererererresesseresseseesessessesaesessessessesssssssessesaesssnsssessesssssssesneses 591
Garbage Collection EXCEptions and CAUSEScvverererrerserersnserseressesessessessessssessessessessssessenses 595
SUMIMANY ..ttt e s e e R e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e aennis 596
1T - 599

xi

(c) ketabton.com: The Digital Library

About the Author

Iuliana Cosmina is currently a software engineer for NCR
Edinburgh. She has been writing Java code since 2002. She
has contributed to various types of applications, such as
experimental search engines, ERPs, track and trace, and
banking. During her career, she has been a teacher, a team
leader, software architect, a DevOps professional, and a
software manager.
She is a Spring-certified professional, as defined by Pivotal,

the makers of Spring Framework, Boot, and other tools.
She considers Spring the best Java framework to work with.

When she is not programming, she spends her time reading, blogging, learning to
play piano, travelling, hiking, or biking.

e You can find some of her personal work on her GitHub account at
https://github.com/iuliana.

e You can find her complete CV on her LinkedIn account at
www.linkedin.com/in/iulianacosmina.

e You can contact her at Iuliana.Cosmina@gmail.com.

xiii

(c) ketabton.com: The Digital Library

About the Technical Reviewer

Wallace Jackson has been writing for leading multimedia publications about his

work in new media content development since the advent of Multimedia Producer
Magazine nearly two decades ago. He has authored a half-dozen Android book titles

for Apress, including four titles in the popular Pro Android series. Wallace received his
undergraduate degree in business economics from the University of California at Los
Angeles and a graduate degree in MIS design and implementation from the University of
Southern California. He is currently the CEO of Mind Tafty Design, a new media content
production and digital campaign design and development agency.

(c) ketabton.com: The Digital Library

Acknowledgments

Here I am again, the main author of a technical book for the third time.

This book was quite challenging to write, because I had to quickly adapt to changes
made to the Java ecosystem. With the new six months interval release system, modules
being introduced, and backward compatibility thrown out the window, I found myself
with a project that stopped compiling and had to invest precious time into fixing it,
understand why it broke in the first place, and eventually adapt the book.

Writing books for beginners is tricky, because as an experienced developer, it might
be difficult to find the right examples and explain them in such a way that even a non-
technical person would easily understand them. That is why I am profoundly grateful to
Matthew Moodie and Mark Powers for all the support and advice they provided to keep
this book at beginner level. We have been working together for four years and it has been
a fruitful collaboration so far.

I would like to thank Wallace Jackson; his recommendations and corrections were
crucial for the final form of the book.

Apress has published many of the books that I have read and used to improve myself
professionally. It is a great honor to publish my fourth book with Apress, and it gives me
enormous satisfaction to be able to contribute to the “making” of a new generation of
Java developers.

I am grateful to all my friends who had the patience to listen to me complain about
sleepless nights and writer’s block. Thank you all for being supportive and making sure I
still had some fun while writing this book. You have no idea how dear you are to me.

I am thankful to John Mayer still, as his music provided yet again, a great
environment for my working nights.

A special thank you to Achim Wagner, whom I consider both a mentor and a dear
friend. He provided me with an environment and support to grow as a professional and
as a person, and I will miss working with him.

xvii

(c) ketabton.com: The Digital Library

ACKNOWLEDGMENTS

A special thank you to the Bogza-Vlad family: Monica, Tinel, Cristina, and Stefan.
You are all close to my heart and this book might have been released later without your
support when I moved to Edinburgh.

And a very special thank-you in advance to all the passionate Java developers who
will find mistakes in the book and be so kind to write me about them so I can provide an
erratum and make this book even better.

xviii

(c) ketabton.com: The Digital Library

Introduction

Even though I have been writing Java Applications since 2002 I don’t think I've ever dived
so deeply into the JVM as I did while writing this book. Most companies I've worked

for had their own code base when I joined them, and my work was mostly related to
designing, improving or maintaining one that already existed. It’s like making brownies
when you already have brownie mix. Writing this book has given me the opportunity to
get down to basics and work with basic ingredients—so, making brownies using eggs,
flower, cocoa, milk, and butter.

Java began in 1982 and was created by a handful of people. The most renowned
name linked to the beginning of Java is James Gosling, also known as the father of
Java, the language that is now used on over three billion devices. When Oracle bought
Sun Microsystems, developers were worried about Java's future, especially since its
main creator quit the company and went on to create what was thought to be Java’s
replacement: Scala. That will probably never happen. Java is still here.

Most banking applications are written in Java and because it is definitely dangerous
and costly to migrate these applications, Java will be here in 50 years, if not more. Java
began by making websites more dynamic and more entertaining, and ended up being
the basis for applications run on ATMs, cashier machines, computers, and mobile
devices. Sure, this would have been more difficult if Java wasn’t cross-platform.

The first Java version was officially released in 1996. Since then, ten more versions
have been released, with the latest one, Java 11, being released on 25th September 2018.
The work on Java 12 has already begun and the early access build is already available.

This book was written with the intention to cover the fundamental elements of the
language and of the JVM, especially the ones introduced in versions 9, 10, and 11.

The book provides a complete overview of the most important Java classes in the JVM,
all wrapped up in a multimodule project that compiles with Java 11 and Gradle 5.

Xix

(c) ketabton.com: The Digital Library

INTRODUCTION

A group of reviewers has gone over the book, but if you notice any inconsistencies,
please send an email to editorial@apress.com, or directly to the author, and corrections
will be made and published in an erratum that will be uploaded to the official GitHub
repository for the book. The example source code for this book can be found on GitHub
or downloaded from the official book’s product page, located at www.apress.com/in/

book/9781484237779.
I truly hope you will enjoy using this book to learn Java as much as I enjoyed writing it.

(c) ketabton.com: The Digital Library

CHAPTER 1

An Introduction to Java
and Its History

Java is currently one of the most influential programming languages. It all started in
1990, when an American company that was leading the revolution in the computer
industry decided to gather its best engineers together to design and develop a product
that would allow them to become an important player in the new emerging Internet
world. Among those engineers was James Arthur Gosling, a Canadian computer scientist
who is recognized as the “father” of the Java programming language. It would take five
years of design, programming, and one rename (from Oak to Java because of trademark
issues), but finally in 1996, Java 1.0 was released for Linux, Solaris, Mac, and Windows.

You might have the tendency to skip this chapter altogether. But I think it would be
a mistake. I was never much interested in the history of Java. I was using it for work. I
knew that James Gosling was the creator and that Oracle bought Sun, and that was pretty
much it. I never cared much about how the language evolved, where the inspiration
came from, or how one version was different from another. I started learning Java at
version 1.5, and I took a lot of things in the language for granted. So, when I was assigned
to a project running on Java 1.4, I was quite confused, because I did not know why
some of the code I wrote was not compiling. Although the IT industry is moving very
fast, there will always be that one client that has a legacy application. And knowing the
peculiarities of each Java version is an advantage, because you know the issues when
performing a migration.

When I started doing research for this book, I was mesmerized. The history of Java is
interesting because it is a tale of incredible growth, success of a technology, and how a
clash of egos in management almost killed the company that created it. Because even if
Java is the most used technology in software development, it is simply paradoxical that
the company that gave birth to it no longer exists.

© Iuliana Cosmina 2018
1. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_1

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

This chapter covers each version of Java to track the evolution of the language and
the Java virtual machine. You can find a timeline for versions 1.0 to 1.8 on the Oracle
official site at http://oracle.com/edgesuite.net/timeline/java./. But first, I'll
introduce the book.

Who This Book Is For

Most Java books for beginners start with the typical Hello World! example depicted here:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

This code, when executed, prints Hello World! in the console. But if you have bought
this book, it is assumed that you want to develop real applications in Java, and get a real
chance when applying for a position as a Java developer. If this is what you want, if this
is who you are, a beginner with the wits and the desire to make full use of this language’s
power, then this book is for you. And that is why to start this book, a complex example is
used. We go over it in almost every section, when some part of it is clarified.

Java is a language with a syntax that is readable and based on the English language.
So, if you have a logical thinking and a little knowledge of the English language, it should
be obvious to you what the following code does without even executing it.

package com.apress.ch.one.hw;
import java.util.list;
public class Exampleo1l {

public static void main(String[] args) {

List<String> items = List.of("1", "a", "2", "a", "3", "a");

items.forEach(item -> {
if (item.equals("a")) {
System.out.println("A");
} else {

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

System.out.println("Not A");

};

In this code example, a list of text values is declared; then the list is traversed, and when

atextis equal to "a", the letter "A" is printed in the console; otherwise, "Not A" is printed.
If you are an absolute beginner to programming, this book is for you, especially
because the sources attached to this book make use of algorithms and design patterns
commonly used in programming. So, if your plan is to get into programming and learn
a high-level programming language, read the book, run the examples, write your own
code, and you should have a good head start.
If you already know Java, you can use this book too because it covers the specifics of

Java versions 9, 10, and 11 (the EAP! release).

How This Book Is Structured

The chapter you are reading is an introductory one that covers a little bit of Java history,
showing you how the language has evolved and a glimpse into its future. Also, the mechanics
of executing a Java application are covered, so that you are prepared for Chapter 2. The
next chapter shows you how to set up a development environment and introduces you
to a simple application. In Chapters 3 to 7, the fundamental parts of the language are
covered: packages, modules, classes, objects, operators, data types, statements, streams,
lambda expressions, and so forth. Starting with Chapter 8 more advanced features are
covered such as: interactions with external data sources: reading writing files, serializing/
deserializing objects, testing and creating an interface. Chapter 12 is dedicated fully to the
publish-subscribe framework introduced in Java 9. Chapter 13 covers the garbage collector.
The book is completed by the java-for-absolute-beginners project. This project is
organized in modules (thus it is a multimodule project) that are linked to each other and
must be managed by Gradle. Gradle is something we developers call a build tool, which
is used to build projects. To build a project means transforming the code into something
that can be executed. I chose to use multimodule projects for the books I write because
it is easier to build them, and common elements can be grouped together, keeping the

'Early Access Program

(c) ketabton.com: The Digital Library

CHAPTER 1

AN INTRODUCTION TO JAVA AND ITS HISTORY

configuration of the project simple and non-repetitive. Also, by having all the sources

organized in one multimodule project, you get the feedback on whether the sources are

working or not as soon as possible, and you can contact the author and ask him or her to

update them.

Conventions

This book uses a number of formatting conventions that should make it easier to read. To

that end, the following conventions are used within the book:

code or concept names in paragraphs appear as follows:
import java.util.list;
code listings appear as follows:

public static void main(String[] args) {
System.out.println("Hello there young developer!");

}

logs in console outputs appear as follows:

01:24:07.809 [main] INFO c.a.Application - Starting Application
01:24:07.814 [main] DEBUG c.a.p.c.Application - Running in debug mode

! This symbol appears in front of paragraphs that you should pay
specific attention to.

Italic font is used for metaphors, jocular terms and technical terms that
the reader should pay special attention to because they are not explained
in the current context, but they are covered in the book. Examples:

“This was mentioned before at the end of Chapter 4 when generics were
introduced.” “The stack memory is used during execution (also referred
to as at runtime)” or “Let’s see how this is being done under the hood”.

Bold font is used for chapter references and important terms.

As for my style of writing, I like to write my books in the same way I have technical

conversations with colleagues and friends: sprinkling jokes, giving production examples,

and making analogies to non-programming situations. Because programming is just

another way to model the real world.

4

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

When Java Was Owned by Sun Microsystems

The first version of Java was released in 1996. Up until that point, there was a small

team named the Green Team that worked on a prototype language named Oak, which
was introduced to the world with a working demo—an interactive handheld home
entertainment controller called the Star7. The star of the animated touch-screen user
interface was a cartoon character named Duke, created by one of the team'’s graphic
artists, Joe Palrang. Over the years, Duke has become the official Java technology mascot,
and every JavaOne conference has its own Duke mascot personality and the most simple
version is depicted in Figure 1-1.

Figure 1-1. The Duke mascot (image source: http://oracle.com)

The Green Team released it to the world via the Internet, because that was the fastest
way to create widespread adoptions. You can imagine that they jumped for joy every
time somebody downloaded it, because it meant people were interested in it. And there
are a few other advantages making software open source, like the fact that contributions
and feedback come from a bigger and diverse number of people from all over the world.
Thus, for Java, this was the best decision, as it shaped the language a lot of developers
are using today. Even after 22 years, Java is still among the top-three most used
programming languages.

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

The American company that started all of this was Sun Microsystems, founded in
1982. It guided the computer revolution by selling computers, computer parts, and
software. Among their greatest achievements is the Java programming language. In
Figure 1-2,%> you can see the company logo that was used since Java’s birth year until it
was acquired by Oracle in 2010.

N

microsystems

Figure 1-2. The Sun Microsystems logo (image source: https://en.wikipedia.
org/wiki/Sun_Microsystems)

It is quite difficult to find information about the first version of Java, but dedicated
developers that witnessed the birth of Java—when the web was way smaller and full of
static pages—did create blogs and shared their experience with the world. It was quite
easy for Java to shine with its applets that displayed dynamic content and interacted
with the user. But because the development team thought bigger, Java became much
more than a web programming language. Because in trying to make applets run in any
browser, the team found a solution to a common problem: portability.

Nowadays, developers face a lot of headaches when developing software that
should run on any operating system. And with the mobile revolution, things have
become really tricky. In Figure 1-3, you see an abstract drawing of what is believed to
be the first Java logo.

>The story behind the logo can be read here: https://goodlogo.com/extended.info/sun-
microsystems-logo-2385. You can also read more about Sun Microsystems.

6

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

JAVA

Figure 1-3. The first Java logo, 1996-2003 (image source: http://xahlee.info/)

Java 1.0 was released at the first JavaOne conference—with over 6000 attendees. It

started out as a language named Oalk® that was really similar to C++ and was designed

for handheld devices and set-top boxes. It evolved into the first version of Java, which

provided developers some advantages that C++ did not.

security: In Java, there is no danger of reading bogus data when
accidentally going over the size of an array.

automatic memory management: A Java developer does not have

to check if there is enough memory to allocate for an object and then
deallocate it explicitly; the operations are automatically handled by the
garbage collector. This also means that pointers are not necessary.

simplicity: There are no pointers, unions, templates, structures.
Mostly anything in Java can be declared as a class. Also, confusion
when using multiple inheritance is avoided by modifying the
inheritance model and not allowing multiple class inheritance.

support for multithreaded execution: Java was designed from the
start to support development of multithreaded software.

portability: A Java motto is Write it once, run it everywhere. This is
made possible by the Java virtual machine, which is covered shortly.

*The language was named by James Gosling after the oak tree in front of his house.

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

All this made Java appealing for developers, and by 1997, when Java 1.1 was released,
there were already approximatively 400,000 Java developers in the world. JavaOne had
10,000 attendees that year. The path to greatness was set. Before going further in our
analysis of each Java version, let’s clarify a few things.

Why Is Java Portable?

I mentioned a few times that Java is portable and that Java programs can run on any
operating system. It is time to explain how this is possible. Let’s start with a simple
drawing, like the one in Figure 1-4.

Java
Program

Linux JVM ' Mac JVM Windows JVM | Solaris JVM

VY Y S

Linux O Mac 05 Windows O o

Figure 1-4. What makes Java portable

Java is what we call a high-level programming language that allows a developer
to write programs that are independent of a particular type of computer. High-level
languages are easier to read, write, and maintain. But their code must be translated by
a compiler or interpreted into machine language (unreadable by humans because is it
made up of numbers) to be executed, because that is the only language that computers
understand.

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

In Figure 1-4, notice that on top of the operating systems, a JVM is needed to execute
a Java program. JVM stands for Java virtual machine, which is an abstract computing
machine that enables a computer to run a Java program. It is a platform-independent
execution environment that converts Java code into machine language and executes it.

So, what is the difference between Java and other high-level languages? Well, other
high-level languages compile source code directly into machine code that is designed
to run on a specific microprocessor architecture or operating system, such as Windows
or UNIX. What JVM does, it that is mimics a Java processor making it possible for a Java
program to be interpreted as a sequence of actions or operating system calls on any
processor regardless of the operating system.

And because the Java compiler was mentioned, we have to get back to Java 1.1,
which was widely used, even as new versions were released. It came with an improved
Abstract Window Toolkit (AWT) graphical API (collections of components used for
building applets), inner classes, database connectivity classes (JDBC model), classes for
remote calls (RMI), a special compiler for Microsoft platforms named JIT,* support for
internationalization, and Unicode. Also, what made it so widely embraced is that shortly
after Java was released, Microsoft licensed it and started creating applications using it.
The feedback helped further development of Java, thus Java 1.1 was supported on all
browsers of the time, which is why it was so widely deployed.

I Alot of terms used in the introduction of the book might seem foreign to you
now, but as you read the book, more information is presented and these words
will start to make more sense. For now, just keep in mind, that every new Java
version, has something more than the previous version, and at that time, every
new component is a novelty.

So, what exactly happens to developer-written Java code until the actual execution?
The process is depicted in Figure 1-5.

“Just In Time

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

¢ B, Example01. java
(Java source file)
Writes public class Exampledl { —
—_ |
Is compiled .
S javac

Developer }

\ Generates

Example01.class
(Java bytecode file)

o -SRI
[Leve/lang/BLring))

"
Lieve/wtil/List<ljeve/lang/Sering;>;

(Lijava/lang O Ject ;L 1ava/ lang /0
Lievasl Ject))W
iLjavalutil/funoty

Is executed
by

0s En—L " e J

Figure 1-5. From Java code to machine code

In Figure 1-5, you see that Java code is compiled and transformed to bytecode that is
then interpreted and executed by the Java virtual machine on the underlying operating
system. This is what Java is: a compiled and interpreted general-purpose programming
language with a large number of features that make it well suited for the web. And now
that we’ve covered how Java code is executed, let’s go back to some more history.

Sun Microsystem’s Java Versions

The first stable Java version released by Sun Microsystems could be downloaded from the
website as an archive named JDK 1.0.2. JDK is an acronym for Java Development Kit. This is
the software development environment used for developing Java applications and applets.
It includes the Java Runtime Environment (JRE), an interpreter (loader), a compiler, an
archiver, a documentation generator, and other tools needed for Java development. We will
get into this more when I cover how to install the JDK on your computer.

10

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Starting with version 1.2, released in 1998, Java versions were given codenames.®
The Java version 1.2 codename was Playground. It was a massive release and this was
the moment when people started talking about the Java 2 Platform. Starting with this
version, the releases up to J2SE 5.0 were renamed, and J2SE replaced JDK because the
Java platform was now composed of three parts:

e J2SE (Java 2 Platform, Standard Edition), which later became JSE, a
computing platform for the development and deployment of portable
code for desktop and server environments

e J2EE (Java 2 Platform, Enterprise Edition), which later became
JEE, a set of specifications extending Java SE with specifications for
enterprise features such as distributed computing and web services

e J2ME (Java 2 Platform, Micro Edition), which later became JME, a
computing platform for development and deployment of portable
code for embedded and mobile devices

With this release, the JIT compiler became part of Sun Microsystem’s JVM (which
basically means turning code into executable code became a faster operation and the
generated executable code was optimized), the Swing graphical API was introduced as
a fancy alternative to AWT (new components to create fancy desktop applications were
introduced), and the Java collections framework (for working with sets of data) was
introduced.

J2SE 1.3 was released in 2000 with the codename Kestrel (maybe as a reference to
the newly introduced Java sound classes). This release also contained Java XML APIs.

J2SE 1.4 was released in 2002 with the codename Merlin. This is the first year that the
Java Community Process members were involved in deciding which features the release
should contain, and thus, the release was quite consistent. This is the first release of the
Java platform developed under the Java Community Process as JSR 59.° The following
features are among those worth mentioning.

e Support for IPv6 (basically applications that run over a network can
now be written to work using networking protocol IPv6).

All codenames, for intermediary releases too, are listed here: http://www.oracle.com/
technetwork/java/javase/codenames-136090.html#close

°If you want to see the contents and the list of Java Specification Requests, follow this URL:
http://www.jcp.org/en/jsr/detail?id=59

11

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

o Non-blocking IO (IO is an acronym for input-output, which refers to
reading and writing data— a very slow operation. Making IO non-
blocking means to optimize these operations to increase speed of the
running application.)

o Logging API (Operations that get executed need to be reported to a
file or a resource, which can be read in case of failure to determine
the cause and find a solution. This process is called logging and
apparently only in this version components to support this operation
were introduced.)

o Image processing API (Components developers can use this to
manipulate images with Java code.)

Java’s coffee cup logo made its entrance in 2003 (between releases 1.4 and 5.0) at the
JavaOne conference. You can see it in Figure 1-6.7

-E__{) Java

—

Figure 1-6. Java official logo 2003-2006 (image source: http://oracle.com)

J2SE 5.0 was released in 2004 with the codename Tiger. Initially, it followed the
typical versioning, and was named 1.5, but because this was a major release with a
significant number of new features that proved a serious improvement of maturity,
stability, scalability, and security of the J2SE, the version was labeled 5.0 and presented
like that to the public, even if internally 1.5 was still used. For this version and the next
two, it was considered that 1.x = X.0. Let’s list those features because most of them are
covered in the book.

"The Java language was first named Oak. It was renamed to Java because of copyright issues.
There are a few theories that you will find regarding the new name. There is one saying that
the JAVA name is actually a collection of the initials of the names being part of the Green team:
James Gosling, Arthur Van Hoff, and Andy Bechtolsheim, and that the logo is inspired by their
love of coffee.

12

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

e Generics provide compile-time (static) type safety for collections and
eliminates the need for most type conversions (which means the type
used in a certain context is decided while the application is running,
we have a full section about this in Chapter 5).

e Annotations, also known as metadata, are used to tag classes and
methods to allow metadata-aware utilities to process them (which
means a component is labeled as something another component
recognizes and does specific operations with it).

¢ Autoboxing/unboxing are automatic conversion between primitive
types and matching object types (wrappers), also covered in Chapter 5.

o Enumerations define static final ordered sets of values using the
enum keyword; covered in Chapter 5.

e Varargs are the last parameter of a method is declared using a type
name followed by three dots (String. . .), which implies that any
number of arguments of that type can be provided and is placed into
an array; covered in Chapter 3.

o Enhanced for each loop is used to iterate over collections and arrays
too; covered in Chapter 5.

o Improved semantics for multithreaded Java programs, covered in
Chapter 7.

o Static imports are covered in Chapter 5.

o Improvements for RMI (not covered in the book), Swing (Chapter 10),
concurrency utilities (Chapter 7), and introduction to the Scanner
class; covered in Chapter 11.

Java 5 was the first available for Mac OS X (version 10.4) and the default version
installed on Mac OS X (version 10.5). There were a lot of updates?® released for this
version to fix issues related to security and performance. It was a pretty buggy release,
which is understandable since quite a lot of features were developed in only two years.

8Let’s call them what they actually are: hotfixes.

13

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

In 2006, Java SE 6 was released with a little delay, with the codename Mustang. Yes,
yet another rename. And yes, yet again a serious number of features were implemented
in a short period of time and a lot of updates followed. This was the last major Java
release by Sun Microsystems. Oracle acquired the company in January 2010. Let’s take a
look at the most important features in this release:

¢ Dramatic performance improvements for the core platform
(applications run faster, need less memory or CPU to execute)

o Improved web service support (optimized components that are
required for development of web applications)

e JDBC 4.0 (optimized components that are required for development
of applications using databases)

o Java Compiler API (basically, from your code you can components
that are used to compile code)

e Many GUI improvements, such as integration of SwingWorker in
the AP], table sorting and filtering, and true Swing double-buffering
(eliminating the gray-area effect); basically, improvement of
components used to create interfaces for desktop applications

In December 2008, Java FX 1.0 SDK was released. JavaFX is used to create graphical
user interfaces for any platform, and the initial version was a scripting language. Until
2008, there were two ways to create a user interface in Java:

e AWT (Abstract Window Toolkit) components, which are rendered
and controlled by a native peer component specific to the underlying
operating system; that is why AWT components are also called
heavyweight components.

e Swing components, which are called lightweight because they do
not require allocation of native resources in the operating system'’s
windowing toolkit. The Swing API is a complimentary extension
of AWT.

In the first versions, it was never really clear if JavaFX would actually have a future
and grow up to replace Swing. The management turmoil inside Sun did not help in
defining a clear path for the project either.

14

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Oracle Takes Over

Although Sun Microsystems won a lawsuit against Microsoft, in which they agreed to pay
$20 million for not implementing the Java 1.1 standard completely, in 2008, the company
was in such poor shape that negotiations for a merger with IBM and Hewlett-Packard
began. In 2009, Oracle and Sun announced that they agreed on the price: Oracle would
acquire Sun for $9.50 a share in cash; this amounted to a $5.6 billion offer. The impact
was massive. A lot of engineers quit, including James Gosling, the father of Java, which
made a lot of developers question the future of the Java platform.

Java SE 7, codename Dolphin, was the first Java version released by Oracle in
2011. It was the result of an extensive collaboration between Oracle engineers and
members of the worldwide Java communities, like the OpenJDK Community and the
Java Community Process (JCP). It contained a lot of changes, but still, a lot fewer than
developers expected. Considering the long period between the releases, the expectations
were pretty high. Project Lambda, which was supposed to allow usage of lambda
expressions in Java (this leads to considerable syntax simplification in certain cases), and
Jigsaw (making JVM and the Java application modular; there is a section in Chapter 3
about them) were dropped. Both were released in future versions. The following are the
most notable features in Java 7.

e JVM support for dynamic languages with the new invokedynamic
bytecode (basically, Java code can use code implemented in non-Java
languages, such as C)

o Compressed 64-bit pointers (internal optimization of the JVM, so less
memory is consumed)

o Small language changes grouped under project Coin

strings in switch (covered in Chapter 7)

automatic resource management in try-statement (covered in Chapter 5)

improved type inference for generics—the diamond <> operator (covered in
Chapter 5)

binary integer literals (covered in Chapter 5)

multiple exceptions handling improvements (covered in Chapter 5)

¢ Concurrency improvements

15

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

o Newl/O library (new classes added to read/write data to/from files,
covered in Chapter 8)

o Timsort to sort collections and arrays of objects instead of merge
sort (Sets of data that are ordered need to be sorted using an
algorithm, basically, in this version, the algorithm was replaced with
one that has better performance. Better performance usually means
reducing of consumed resources: memory and/or CPU, or reducing
the time needed for execution.)

It must have been difficult to pick up a project and update it with almost none of the
original development team involved. That can be seen in the 161 updates that followed;
most of them needed to fix security issues and vulnerabilities.

JavaFX 2.0 was released with Java 7. This confirmed that the JavaFX project had a
future with Oracle. As a major change, JavaFX stopped being a scripting language and
became a Java API. This meant that knowledge of the Java language syntax would be
enough to start building user graphical interfaces with it. JavaFX started gaining ground
over Swing because of its hardware-accelerated graphical engine called Prism that did a
better job at rendering.

Java SE 8, codename Spider, was released in 2014, and included features that were
initially intended to be part of Java 7. But, better late than never, right? Three years in the
making, Java 8 contained the following key features.

o Language syntax changes

Language-level support for lambda expressions (functional programming
features)

Support for default methods in interfaces (covered in Chapter 4)

New date and time API (covered in Chapter 5)

New way to do parallel processing by using streams (covered in Chapter 8)

e Improved integration with JavaScript (the Nashorn project).
JavaScript is a web scripting language that is quite loved in the
development community, so providing support for it in Java probably
won Oracle a few new supporters.

o Improvements of the garbage collection process

16

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Starting with Java 8, codenames were dropped to avoid any trademark-law hassles;
instead, a semantic versioning that easily distinguishes major, minor, and security-
update releases was adopted.® The version number matches the following pattern:

$MAJOR . $MINOR.$SECURITY

When executing java -version in a terminal (if you have Java 8 installed), you see
something similar to the following log.

$ java -version

java version "1.8.0 162"

JavaTM SE Runtime Environment build 1.8.0_162-b12

Java HotSpotTM 64-Bit Server VM build 25.162-b12, mixed mode

In this log, the version numbers have the following meaning:

e The 1 represents the major version number, incremented for a major
release that contains significant new features as specified in a new
edition of the Java SE Platform Specification.

o The 8 represents the minor version number, incremented for a minor
update release that may contain compatible bug fixes, revisions to
standard APIs and other small features.

o The 0 represents the security level that is incremented for a security-
update release that contains critical fixes, including those necessary
to improve security. $SECURITY is not reset to zero when $MINOR is
incremented, which lets the users know that this version is a more

secure one.
e 162 is the build number.
e b12 represents additional build information.

This versioning style is quite common for Java applications, thus this versioning style
was adopted to align with the general industry practices.

Java SE 9 was released in September 2017. The long-awaited Jigsaw project was
finally here. The Java platform is finally modular.

Java Enhancement Proposal 223: http://openjdk.java.net/jeps/223

17

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

I This is a big change for the Java world; it’s not a change in syntax and it’s not
some new feature. It’s a change in the design of the platform. Some experienced
developers | know, who have used Java since its first years have difficulties
adapting. It is supposed to fix some serious problems that Java has been living
with for years (covered in Chapter 3). You are lucky because, as a beginner,

you start from scratch, so you do not need to change the way you develop your
applications.

The following are the most important features, aside the introduction of Java
modules.'?

o The Java Shell tool, an interactive command-line interface for
evaluation declarations, statements, and expressions written in Java
(covered in Chapter 3)

e Quite a few security updates

o Improved try-with-resources: final variables can now be used as
resources (covered in Chapter 5)

o " "isremoved from the set of legal identifier names (covered in
Chapter 4)

e Support for private interface methods (covered in Chapter 5)

« Enhancements for the Garbage-First (G1) garbage collector; this
becomes the default garbage collector (covered in Chapter 13)

o Internally, a new more compact String representation is used

(covered in Chapter 5)

o Concurrency updates (related to parallel execution, mentioned in
Chapter 5)

o Factory methods for collections (covered in Chapter 5)

e Updates of the image processing API optimization of components
used to write code that processes images

19A detailed description of all JDK 9 features can be found here: https://docs.oracle.com/
javase/9/whatsnew/toc.htm#ISNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA

18

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Java 9 followed the same versioning scheme as Java 8, with a small change. The Java
version number contained in the name of the JDK finally became the $MAJOR number in
the version scheme. So, if you have Java 9 installed, when executing java -versionina
terminal, you see something similar to the following log.

$ java -version

java version "9.0.4"

JavaTM SE Runtime Environment build 9.0.4+11

Java HotSpotTM 64-Bit Server VM build 9.0.4+11, mixed mode

Java SE 10 (AKA Java 18.3) was released on March 20, 2018. Oracle changed the Java
release style, so a new version is released every six months. Also, Java 10 uses the new
versioning convention set up by Oracle: the version numbers follow a $YEAR. $MONTH
format.!' Apparently, this release versioning style is supposed to make it easier for
developers or end users to figure out the age of a release so that they can judge whether
to upgrade it to a newer release with the latest security fixes and additional features.

The following are a few features of Java 10.'?

e Alocal-variable type inference to enhance the language to extend
type inference to local variables (this is the most expected feature and
is covered in Chapter 5)

» More optimizations for garbage collection (covered in Chapter 13)

o Application Class-Data Sharing to reduce the footprint by sharing
common class metadata across processes (this is an advanced feature
that won’t be covered in the book)

e More concurrency updates (related to parallel execution, mentioned
in Chapter 5)

o Heap allocation on alternative memory devices (The memory
needed by JVM to run a Java program—called heap memory—can be
allocated on an alternative memory device, so the heap can also be
split between volatile and non-volatile RAM. More about memory
used by Java applications can be read in Chapter 5.)

"Java Enhancement Proposal 322: http://openjdk.java.net/jeps/322

2The complete list can be found at http://openjdk.java.net/projects/jdk/10/ and the
release notes containing the detailed list with API and internal changes can be found at http://
www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html10-relnote-
issues-4108729.html
19

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

And since we've done this before, let’s see what running java -version in a terminal
shows for this Java version.

$ java -version

java version "10" 2018-03-20

JavaTM SE Runtime Environment 18.3 build 10+46

Java HotSpotTM 64-Bit Server VM 18.3 build 10+46, mixed mode

Java SE 11 (AKA Java 18.9)" (released on 25 September 2018) contains the following
features:

e Removal of JEE advanced components used to build enterprise Java
applications and Corba (really old technology for remote invocation,
allowing your application to communicate with applications installed
on a different computer) modules

o Local-variable syntax for lambda parameters allow the var keyword
to be used when declaring the formal parameters of implicitly typed
lambda expressions

o Epsilon, alow-overhead garbage collector (is a no-GC, so
basically you can run an application without a GC), basically more
optimizations to the garbage collection (covered in Chapter 13)

e More concurrency updates (related to parallel execution, mentioned
in Chapter 5)

Aside from these changes, it was also speculated that a new versioning change
should be introduced because the $YEAR. $MONTH format did not go so well with
developers. (Why so many versioning naming changes, right? Is this really so important?
Apparently, it is.) The proposed versioning change is similar to the one introduced in
Java 9, and if you are curious, you can read a detailed specification for it at
http://openjdk.java.net/jeps/322.

When this chapter was written, JDK 11 was available only via the early access
program, which is why the "ea" string is present in the version name; it means early
access. It is quite difficult to use it, as it is not supported by any editors or other build
tools yet. By the time this book is released, Java 11 will be stable and ready to use and the
sources for the book are updated accordingly on the GitHub repository.

BDetails are at http://openjdk.java.net/projects/jdk/11/

20

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

$ java -version

java version "11-ea" 2018-09-18

JavaTM SE Runtime Environment 18.9 build 11-ea+2

Java HotSpotTM 64-Bit Server VM 18.9 build 11-ea+2, mixed mode

And this is where the details end. If you want more information on the first 20 years
of Java’s life, you can find it on Oracle’s website.'*

What the Future Holds

Java has dominated the industry for more than 20 years. It wasn’t always at the top of the
most-used development technologies, but it never left the top five since its existence.
Even with server-side JavaScript smart frameworks, like Node.js, the heavy-lifting is still
left to Java. Emerging programming languages like Scala and Kotlin run on the JVM, so
maybe the Java programming language will suffer a serious metamorphosis in order to
compete, but it will still be here.

The modularization possibility introduced in version 9 opens the gates for Java applications
to be installed on smaller devices, because to run a Java application, we no longer need
the whole runtime—only its core plus the modules the application was built with.

Also, there are a lot of applications written in Java, especially in the financial domain,
so Java will still be here, because of legacy reasons and because migrating these titan
applications to another technology is an impossible mission.

Java will probably survive and be on top for the next 10 to 15 years. It does help that itis
avery mature technology with a huge community built around it. And the fact that is easy to
learn and developer-friendly makes it remain the first choice for most companies. So, you
might conclude at this point that learning Java and buying this book is a good investment.

Prerequisites

Before ending this chapter, it is only fair to tell you that to learn Java, you need to know or
have a few things....

e Your way around an operating system, such as Windows,
Linux or macOS

"The first 20 years of Java’s life: http://oracle.com.edgesuite.net/timeline/java/

21

(c) ketabton.com: The Digital Library

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

o How to refine your search criteria, because information related to
your operating systems is not covered in the book; if you have issues,
you must fix them yourself

¢ An Internet connection

If you already know Java, and you just bought this book out of curiosity or for the
modules chapter, knowing about a build tool like Maven or Gradle is helpful, because
the source code is organized in a multimodule project that can be fully built with one
simple command. I've chosen to use a build tool because in this day and age, learning
Java without one makes no sense; any company you apply to most definitely uses one.

Aside from the prerequisites that I listed, nothing else is needed. You do not need to
know math, algorithms, or design patterns. Actually, you might end up knowing a few
after you read this book.

This being said, let’s dig in.

22

(c) ketabton.com: The Digital Library

CHAPTER 2

Preparing Your
Development Environment

To start learning Java, you need a few things installed on your computer. The following
are the requirements:

e Java support on your computer (kinda’ mandatory).

e Anintegrated development environment, also known as IDE, which
is basically an application in which you write your code and that you
use to compile and execute it.

o Therecommended IDE for this book is Intelli] IDEA. You can
go to their website to get the free community edition; for the
purposes of the book, it will do.

e Or, you can choose the most popular free IDE for Java
development: Eclipse.

e Or, you can try NetBeans,' which is the default choice for most
beginners because it was bundled with the JDK until version 8.%*

'Get it from here https://netbeans.org/
*See: http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-
jsp-142931.html
For Eclipse and NetbeansNetBeans, you will need to install a plugin for Gradle support.
23

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_2

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

e Gradle is a build tool used to organize projects, to easily handle
dependencies, and make your work easier as your projects get bigger.
(It is mandatory because the projects in this book are organized and
built on a Gradle setup.)

o Gitis aversioning system that you can use to get the sources for the
book, and you can experiment with it and create your own version.
It is optional because GitHub, which is where the sources for this
chapter are hosted, supports direct download.*

To write and execute Java programs/applications, you only need the Java
Development Kit installed. All other tools that I've listed here are only needed to make
your job easier and to familiarize you with a real development job.

I You probably need administrative rights if you install these applications for all
users. For Windows 10, you might even need a special application to give your user
administrative rights so you can install the necessary tools. This book provides
instructions on how to install everything—assuming your user has the necessary
rights. If you need more information, the Internet is there to help.

If it seems like a lot, do not get discouraged; this chapter contains instructions on
how to install and verify that each of tool is working accordingly. Let’s start by making
sure your computer supports Java.

Installing Java

Here you are with your computer and you can’t wait to start writing Java applications.
But first, you need to get yourself a JDK and install it. For this, you need an Internet
connection to open https://developer.oracle.com/java.

*Also, I don’t think there is a company that does not use a versioning system these days, so getting
comfortable with Git could be a serious advantage when applying for a software developer
position.

24

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Scroll down until you see the Downloads section. Click the Java SE link. The two
links and their contents are depicted in Figure 2-1.

@ @ hitpsyidemeiope: onace.comfva

(-~} +
Downloads
Free software downloads for developers.
4 « «
=’]ava =’ Java =’]ava
JavaEE »

Java SE >

Java Mission Control 3

SEE ALL DOWNLOADS »

@ www.oracle.com/technetwork/j

downic

jsp-138363.html 5]

ORACLE

Q ". Account v @ Coun

Oracle Technology Network (Java | Java SE [Downloads

Java SE

Ovarviaw Dh Ci Training |
Java EE ' N
Java ME Java SE Downloads
Java SE Advanced & Suite
Java Embadded J
o8 g
M -— -
=’ Java 2 NetBeans
Wt Tier
Java Card
Java TV —————— ——
rr—— Java Platferm (JOK) 10 NetBeans with JOK 8
Cormmunity Java Platform, Standard Edition
Java Magazing Java SE 10
Java SE 10 is the latest feature release for the Java SE Platferm
Learn mare #
- instaliation Instructions JDK
» Release Moles
= Oracle License
4 2 . ; Server JRE
* Java SE Licensing Information User Manual
* Includes Third Party Licansas
= Centified System Configurations JRE

Figure 2-1. Navigating the Oracle site to find the desired product, JDK in this case

25

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

On the Oracle site, you find the latest stable Java version. Click the Download JDK
button. You should be redirected to the page depicted in Figure 2-2.

@ www.oracle.com/ftechnetwork/javafjavase/downloads/jdk10-downloads-4416644.html

ORACLE E Menu Q ‘.. Account v eCOL

Oracle Technology Network [Java [Java SE / Downloads

Java SE Overview | Downloads | Documentation || Community | Technologies || Training

Java EE ' ' ' ' '

Java ME Java SE Development Kit 10 Downloads

Java SE Advanced & Suite Thank you for downloading this release of the Java™ Platform, Standard Edition Development Kit

Java Embedded (JODK™). The JDK is a development environment for building applications, and components using the
Java programming language.

Java DB

Web Tier The JDK includes tools useful for developing and testing programs written in the Java programming
language and running on the Java platform.

Java Card

Java TV See also:

ava « Java Developer Newsletter: From your Oracle account, select Subscriptions, expand

New to Java Technology, and subscribe to Java.

Community « Java Developer Day hands-on workshops (free) and other events

Java Magazine « Java Magazine

JOK 10 checksum

Java SE Development Kit 10
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.
Thank you for accepting the Oracle Binary Code License Agreement for Java SE; you may
now download this software.

Product / File Descripti File Size Download
Linux 305.93 MB #jdk-10_linux-x84_bin.rpm
Linux 338.37 MB #®jdk-10_linux-x64_bin.tar.gz
macOS 39542 MB #®jdk-10_osx-x64_bin.dmg
Solaris SPARC 206.77 MB #jdk-10_solaris-sparcv_bin.tar.gz
Windows 390.08 MB #jdk-10_windows-x64_bin.exe

Figure 2-2. The Oracle page where you can download the desired JDK

As you can see, JDK is available for a few operating systems. You should download
the one matching yours. For writing this book and the source code, I used a macOS
computer, which means I download the JDK with the .dmg extension.

You need to accept the license agreement before being allowed to download the
desired JDK. You can read it if you are curious, but basically, it tells you that you are
allowed to use Java as long as you do not modity its original components. It also tells you
that you are responsible for how you use it, so if you use it to write or execute dangerous
applications, you are legally responsible.

26

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

If you want to get your hands on an early version of JDK that is not officially released
yet, go to http://openjdk.java.net/projects/jdk/. Under Releases, versions 10 and
11, an early access (unstable) JDK 11 is available for download.

I This book covers Java specifics until Java 11, but that version was eight
months away when this chapter was written, so some images and details might
seem deprecated. Keep in mind that there are common details that remain the
same from one version to the next, and those won’t be reviewed and changed, as
the only thing that is different is the version number. Since this book was planned
to be released after Java 11 was released, it is recommended to download that
version of the JDK to have full compatibility of the sources.

After you download the JDK, the next step is to install it. Just double-click it and
click Next until finished. This works for Windows and macOS. The JDK is installed in a
specific location.

In Windows, it is C: \ProgramFiles\Java\jdk-10.

In macOS, itis /Library/Java/JavaVirtualMachines/jdk-10. jdk/Contents/Home.

On Linux systems, depending on the distribution, the JDK install location varies. My
preferred way is to get the *.tar.gz from the Oracle site that contains the full content
of the JDK, unpack it, and copy it to a specific location. Also, my preferred location on
Linux is /home/iuliana.cosmina/tools/jdk-10.jdk.

I Using a PPA (repository)® installer on Linux puts the JDK files where they are
supposed to go on Linux automatically and updates them automatically when a
new version is released using the Linux (Global) updater utility. But if you are using
Linux proficiently, you’ve probably figured this out.

If you go to that location, you can inspect the contents of the JDK. In Figure 2-3, the
contents of JDK 10 are on the left; the contents of the JDK 8 are on the right.

°Also known as a Package Manager

27

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

a4
storage jLibrary/lava/JavaVirtualMachines/jdk-10.jdk/Contents/Hor » storage [Library/lava/lavaVirtualMachinesjdk1.8.0_162.jdk/Contents/Home

E.. NAME ~ SIZE DATE PER...| |E.. NAME ~ SIZE DATE PER...
Q. <DIR> 02/01/18 01:28 PM) .. 12/20/17 03:55 AM

bin <DIR> 02/01/18 01:31 PM dr-x bin <DIR> 12/20/17 03:58 AM dr-x

conf <DIR> 02/01/18 01:28 PM dr-x db <DIR> 12/20/17 03:53 AM dr-x

include <DIR> 02/01/18 01:28 PM dr-x include <DIR> 12/20/17 03:53 AM dr-x

jmods <DIR> 02/01/18 01:28 PM dr-x jre <DIR> 12/20/17 03:55 AM dr-x

legal <DIR> 02/01/18 01:28 PM dr-x ik <DIR> 12/20/17 03:55 AM dr-x

lib <DIR> 02/01/18 01:28 PM dr-x man <DIR> 12/20/17 03:53 AM dr-x

@ README.html| 1KB 02/01/18 01:28 PM -r-- COPYRIGHT 3.1KE 12/20/17 03:53 AM -r--

release 1.5 KB 02/01/18 01:28 PM -r-- Javafx-sre.zip 4.9 MB 12/20/17 12:40 AM -r--

LICENSE 1KE 12/20/17 03:53 AM -r--

& README.html 1KE 12/20/17 03:53 AM -r--

release 1KE 12/20/17 03:53 AM -r--

Sre.zip 20 ME 12/20/17 03:53 AM -r--

o THIRDPARTYLICENSEREADME-JAVAFX. txt 62 KB 12/20/17 12:40 AM -r--

o THIRDPARTYLICENSEREADME.txt 141 KB 12/20/17 03:53 AM -r--

Figure 2-3. JDK version 8 and ten contents comparison

I chose to make this comparison because, starting with Java 9, the content of the
JDK is organized differently. Until Java 8, the JDK contained a directory called jre
that contained a Java Runtime Environment (JRE) used by the JDK. The 1ib directory
contains Java libraries and support files needed by development tools.

The bin contains a set of Java executables for running Java applications.

Starting in Java 9, the JRE was no longer isolated in its own directory. In the
Figure 2-4, you see the contents of the JDK 10 on the left, and the contents of the JRE 10

on the right.
storage [Library/Java/JavaVirtualMachines/jdk - 10, jdk /Contents /Home / : wuhana cosmina [Users /iuliana.cosmina /Downloads fjre - 10-ea/|
E. NAME ~ SIZE DATE PER .. NAME ~ SIZE DATE PERMISSIONS
O . <DIR> 02/01/18 01:28 PM o I <DIR> 02/01/18 01:19 PM
bin <DIR> 02/01/18 01:31 PM dr-x bin <DIR> 02/01/18 01:19 PM drwxr-xr-x
conf <DIR> 02/01/18 01:28 PM dr-x conf <DIR> 02/01/18 01:19 PM drwxr-xr-x
include <DIR> 02/01/18 01.28 PM dr-x legal <DIR> 02/01/18 01.19 PM drwxr-xr-x
jmods <DIR> 02/01/18 01:28 PM dr-x b <DIR> 02/01/18 01:19 PM drwor-xr-x
legal <DIR> 02/01/18 01:28 PM dr-x |@ README.htmi 1 KB 02/01/18 01:19 PM ~r==r-=r-=
b <DIR> 02/01/18 01:28 PM dr-x release 1.2 KB 02/01/18 01:19 PM =rw=r==r-=
README html 1K8 02/01/18 01:28 PM -r--
release L.SKB 02/01/18 01:28 PM -r--

Figure 2-4. JDK 10 and JRE contents compared

’JDK and JRE 10 have the same directory structure introduced in version 9.

28

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

The directory structure depicted was introduced when Java 9 was released. You can
read more about it on the official Oracle site.”

The most important thing you need to know about the JDK is that the bin directory
contains executables and command-line launchers that are defined by the modules
linked to the image, thus the JDK has a few of those extra compared to the JRE. The other
directories are the jmods directory, which contains the compiled module definitions, and
the include directory, which contains the C-language header files that support native-
code programming with the Java Native Interface (JNI) and the Java Virtual Machine
(JVM) Debug Interface.

The JAVA _HOME Environment Variable

The most important directory in the JDK is the bin directory, because that directory

has to be added to the path of your system so you can call the Java executables

from anywhere. This allows other applications to call them as well, without extra
configurations steps needed. Most IDEs used for handling® Java code are written in Java,
and they require knowing where the JDK is installed so that they can be run. This is done
by declaring an environment variable named JAVA HOME that points to the location of the
JDK directory. To make the Java executables callable from any location within a system,
you must add the bin directory to the system path. The next three sections explain how
to do this on the three most common operating systems.

"The new directory structure introduced with Java 9 is explained in detail at https://
docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.
htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350

®Includes operations like writing the code, analyzing the code, compiling it, and executing it.

29

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

JAVA_HOME on Windows

To declare the JAVA_HOME environment variable on a Windows system, you need to open
the dialog window for setting up system variables. On Windows systems, click the Start
button; in the menu, there is a search box (or right-click the Start button for a context-
menu and select Search). Enter the word environment in there (the first three letters
should suffice) and the option should become available for clicking. These steps are

depicted in Figure 2-5.

0O €03 Filters \v/

~ Best match
(

L@ Edit the system environment variables
= Control panel

Settings
E4 Edit environment variables for your account

Documents (2+)

env

Figure 2-5. Windows menu item to configure environment variables

30

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

After clicking that menu item, a window like the one shown in Figure 2-6 should
open.

Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.

Perfformance

Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your sign-in
Startup and Recovery
System startup, system failure, and debugging information
Environment Variables. ..
0K Cancel Apply

Figure 2-6. First dialog window to set environment variables on Windows

Click the Environment Variables button. Another dialog window opens, which is
split into two sections: user variables and system variables. You are interested in system
variables because that is where we declare JAVA_HOME. Just click the New... button and a
small dialog window appears with two text fields; one requires you to enter the variable
name-JAVA HOME in this case, and one requires you to enter the path—to the JDK in
this case. The second window and the variable information pop-up dialog window are
depicted in Figure 2-7.

31

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

User variables for iuliana.grajdeanu

Variable Value

OneDrive C:\Users\iuliana.grajdeanu’\OneDrive

Path %USERPROFILE%:\AppData\Local\Microsoft\WindowsApps;

TEMP %USERPROFILE%:\AppData\Local\Temp

TMP %USERPROFILES:\AppData\Local\Temp
Variable pame: | JAVA_HOME]
Variable value: | CA\Program Files\Java\jdk-10 |

Browse Directory... Browse File... oK Cancel

System variables

Variable Value A
ComSpec CAWINDOWS\system32\cmd.exe

GRADLE_HOME Ci\tools\gradle

JAVA_HOME C:\Program Files\Java\jdk-10

M2_HOME C\tools\maven

NLS_LANG AMERICAN_AMERICA.WEBISO8859P15

NUMBER_OF_PROCESSORS &

os Windows_NT

Path C:\ProgramData\Oracle\Java\javapath;C:\db\product\12.2.0\dbhome_1\bin;C:\WIN...
PATHEXT .COM:.EXE;.BAT;.CMD;.VBES; .VBE;.JS;.JSE;.WSF;.WSH;.MSC

PROCESSOR_ARCHITECTURE AMDS4 v

New... Edit... Delete
oK Cancel

Figure 2-7. Declaring JAVA_HOME as a system variable on Windows

After defining the JAVA_HOME variable, you need to add the executables to the system
path. This can be done by editing the Path variable. Just select it from the System
Variables list and click the Edit... button. Starting in Windows 10, each part of the Path
variable is shown on a different line, so you can add a different line and add %JAVA _
HOME%\bin on it. This syntax is practical because it takes the location of the bin directory
from whatever location the JAVA_HOME variable contains. The dialog window is depicted
in Figure 2-8.

32

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Useq Edit environment variable %
Va |
o C:\ProgramData\Oracle\Java\javapath New
B Cdb\product\12.2.00dbhome_1\bin
T: %SystemRoot%\system32 Edit
1 %SystemRoot%
%SystemRoot %\ System32\Wbem Browse...
9%6SYSTEMROOT %\ System32\WindowsPowerShell\w1.0\
FJAVA_HOME%\bin Delete
%M2_HOME%\bin
%GRADLE_HOME3%\bin
Move Up
Move Down -
Syst{ Edit text...
Va ad
Cq
Gl
1A
M
N
N [ox][conce
0
Path C:\ProgramData\Oracle\Java\javapath;C:\db\product\12.2.0\dbhome_1\bin; C:\WIN...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE; JS; JSE; WSF;.WSH;.MSC
PROCESSOR_ARCHITECTURE AMD&4 v
New... Edit... Delete
oK Cancel

Figure 2-8. Declaring the JDK executables directory as part of the system Path
variable on Windows 10

On older Windows systems, the contents of the Path variable are depicted in
the dialog box shown in Figure 2-7, so you must add the %JAVA_HOME%\bin text in
the Variable value text field, and separate it from the existing content by using a
semicolon ().

No matter which Windows system you have, you can check that you set everything
correctly by opening Command Prompt and executing the set command. This lists
all the system variables and their values. JAVA_HOME and Path should be there with the
desired values. For the setup proposed in this section when executing set the output is
depicted in Figure 2-9.

33

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

B Command Prompt - [m] *

C:\Users\iuliana.grajdeanu>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\iuliana.grajdeanu\AppData\Roaming
CommonProgramfFiles=C:\Program Files\Common Files
CommonProgramFiles(x86)=C:\Program Files (x86)\Common Files
CommonProgramW6432=C:\Program Files\Common Files
COMPUTERNAME=ROSBZ40443248
ComSpec=C: \WINDOWS\system32\cmd.exe
GRADLE_HOME=C:\tools\gradle
HOMEDRIVE=C:

H=\Users\iuliana.grajdeanu
AVA_HOME=C:\Program Files\Java\jdk-10
LOCALAPPDATA=C:\Users\iuliana.grajdeanu\AppData\local
LOGONSERVER=\\ROSBZSRVDC11
M2_HOME=C:\tools\maven
NLS_LANG=AMERICAN_AMERICA.WEB8ISO8B59P15
NUMBER_OF_PROCESSORS=8
OneDrive=C:\Users\iuliana.grajdeanu\OneDrive
0S=Windows NT
E;;hwc:\ProgramData\Ora:le\Java\javapath;c:\db\product\lz.Z.B\dbhome_l\bin;c:\HINDOHS\systemBZ;C:\HINDOHS;C:\HI

S\System32\Wbem;C: \WINDOWS\System32\WindowsPowerShell\v1.0\ C:\Program F \Java\jdk-18\bin;C:\tools\maven\
n;C:\tools\gradle\bin;C:\Users\iuliana.grajdeanu\AppData\Local\Microsoft\WindowsApps;
PATHEXT=.COM; ,EXE; .BAT; .CMD; .VBS; .VBE; . J5; . JSE; .WSF; .WSH; .MSC
PROCESSOR_ARCHITECTURE=AMDG4
PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 94 Stepping 3, Genuinelntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=5e@3
ProgramData=C:\ProgramData
ProgramFiles=C:\Program Files
ProgramFiles(x86)=C:\Program Files (x86)
ProgramW6432=C:\Program Files
PROMPT=§P3G
PSModulePath=C:\Program Files\WindowsPowerShell\Modules;C:\WINDOWS\system32\WindowsPowerShell\vl.@\Modules
PUBLIC=C:\Users\Public
SESSIONNAME=Console
SystemDrive=C:
SystemRoot=C: \WINDOWS
TEMP=C:\Users\IULIAN~1.GRA\AppData\Local\Temp
TMP=C:\Users\IULIAN~1.GRA\AppData\Local\Temp
UATDATA=C: \WINDOWS\CCM\UATData\D9F8C395-CAB8-491d-BBAC-179A1FE1BET7
USERDNSDOMAIN=NET . WORK
USERDOMAIN=WORK
USERDOMAIN_ROAMINGPROFILE=WORK
USERNAME=iuliana.grajdeanu
USERPROFILE=C:\Users\iuliana.grajdeanu
windir=C: \WINDOWS

C:\Users\iuliana.grajdeanu>

Figure 2-9. Windows system variables listed with the set command

If you execute the previous command and see the expected output and then execute
java -versionin the command prompt, it prints the expected result. You are all set.

...> Jjava -version
java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

34

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

JAVA_ HOME on macO0S

The location in which JDK is installed is /Library/Java/JavaVirtualMachines/jdk-
10.jdk/Contents/Home. Your JAVA_HOME should point to this location. To do this for the
current user, you can do the following:

1. Inthe /Users/your.user directory, create a file named
.bash_profile.

2. Inthis file, write the following:
export JAVA HOME=$(/usr/libexec/java_home -v10)
export PATH=$JAVA HOME/bin:$PATH

On macOS§, you can simultaneously install multiple Java versions. You can set which
version is the one currently used on the system by obtaining the JDK location for the
desired version by calling the /usr/libexec/java_home command and giving the Java
version you are interested in as the argument. The result of executing the command is
stored as a value for the JAVA_HOME variable.

On my system, I have JDK 8, 9, 10, and 11 installed. If I execute the command, giving
an argument to each of the Java versions, look at what happens:

$ /usr/libexec/java_home -vi1
/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

$ /usr/libexec/java_home -v10
/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

$ /usr/libexec/java_home -v9
/Library/Java/JavaVirtualMachines/jdk-9.0.4.jdk/Contents/Home

$ /usr/libexec/java_home -v1.8
/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/Contents/Home

Depending of the version given as argument, a different JDK location is returned. If
you want to test the value of the JAVA_HOME, the echo command can help with that.

$ echo $JAVA HOME
/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

35

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

The line export PATH=$JAVA HOME/bin:$PATH adds the contents of the bin directory
from the JDK location to the system patch. This means that I could open a terminal and
execute any of the Java executables under it. For example, I could verify that the Java
version set as default for my user is the expected one by executing java -version.

$ java -version
java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

If you do all of this and java -version prints the expected result, you are all set.

JAVA_HOME on Linux

! If you are using Linux proficiently, you probably are using a PPA, so you can
skip this section. But if you like to control where the JDK is and define your own
environment variables, keep reading.

Linux systems are Unix-like operating systems. This is similar to macOS, which is
based on Unix. Depending on your Linux distribution, installing Java can be done via the
specific package manager or by directly downloading the JDK as a *. tar.gz archive from
the official Oracle site.

If Java is installed using a package manager, the necessary executables are usually
automatically placed in the system path at installation time. That is why in this book, we
cover only the cases where you do everything manually, and choose to install Java only
for the current user in a location such as /home/your.user/tools/jdk-10.jdk,® because
covering package managers is not the object of the book after all.*

9Replaces your.user with your actual system username

9Linux users do not really need this section anyway.©

36

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

So, after downloading the JDK archive from the Oracle site and unpacking it at
/home/your.user/tools/jdk-10. jdk, you need to create a file named either .bashrc or
.bash_profile' in your user home directory and add the following to it.

export JAVA HOME=/home/your.user/tools/jdk-10.jdk
export PATH=$JAVA HOME/bin:$PATH

As you can see, the syntax is similar to macOS. To check the location of the JDK and

the Java version, same commands mentioned in the macOS section can be used.

Installing Gradle

M¥radle Gradle 5.x ** The sources attached to this book can be compiled and executed
using the Gradle wrapper, which is a batch script on Windows and a shell script for other
operating systems. When you start a Gradle build via the wrapper, Gradle automatically
downloads and runs the build; thus you do not to really need to install Gradle.
Instructions on how to do this can be found by reading the public documentation at
www.gradle.org/docs/current/userguide/gradle_wrapper.html.

A good practice is to keep code and build tools separate, and for the project attached
to this book this is the recommended way to go.

If you decide to use Gradle outside the editor, you can download the binaries only
(or if you are curious, you can download the full package, which contains binaries,
sources, and documentation) from the official site (www.gradle.org), unpack them, and
copy the contents somewhere on the hard drive. Create a GRADLE_HOME environment
variable and point it to the location where you have unpacked Gradle. Also, add
%GRADLE_HOME%\bin for Windows, or $GRADLE_HOME/bin for Unix-based operating
systems, to the general path of the system.

Gradle was chosen as a build tool for the sources of this book because of the easy
setup, small configuration files, flexibility in defining execution tasks, and because it is
practical to learn a build tool—because for medium-sized and large projects, they are a
must-have.

"On some Linux distributions, the file might already exist, you just need to edit it.

37

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

I Verify that the version of Gradle the operating system sees is the one you just
installed by opening a terminal (Command Prompt in Windows, and any type of
terminal you have installed on macOS and Linux) and entering

gradle -version

You should see something similar to this:

Build time: 2018-08-26 23:59:23 UTC

Revision: c2edb259761ee18f9a14e271f24ef58530b1300f

Kotlin DSL: 1.0-rc-3

Kotlin: 1.2.60

Groovy: 2.4.15

Ant: Apache Ant (TM) version 1.9.11 compiled on March 23 2018
JUM: 10 (Oracle Corporation 10+46)

0S: -- whatever operating system you have --

The preceding text is confirmation that Gradle commands can be executed in your
terminal; thus, Gradle was installed successfully.

Installing Git

This is an optional section, but as a developer, being familiar with a versioning system
is important, so here it is. To install Git on your system, just go to the official page at
https://git-scm.com/downloads and download the installer. Open the installer and
click Next until done. This works for Windows and macOS.*? Yes, it is this easy. You do
not need to do anything else.” For Linux, you can use your package manager or PPA to
install Git.

2For macOS, you can use homebrew as well.

BJust in case, here is a page with instructions on how to install Git for all operating systems:
https://gist.github.com/derhuerst/1b15ff4652a867391103

38

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

To test that Git installed successfully on your system, open a terminal (Command
Prompt in Windows, and any type of terminal you have installed on macOS and Linux)
andrun git --version to see the result that it is printed. It should be the version of Git
that you just installed.

$ git -version
git version 2.15.1

Now that you have Git installed, you can get the sources for this book by cloning the
official Git repository in a terminal or directly from the IDE. But more about this a little
bit later.

Installing a Java IDE

The editor that I recommend, based on my experience of more than ten years, is IntelliJ
IDEA. It is produced by a company called JetBrains. You can download this IDE from
their official site at www. jetbrains.com. There is an Ultimate Edition available that
you can use for free for 30 days; after that, you need to acquire a license. That is why I
recommend you download and use the Community Edition,'* because for the simple
development involved in learning Java, this version suffices.

After you download the Intelli] IDEA archive, double-click it to install it. After that,
start it to do a couple of configurations. Just click the Next button until you get to the
plugin selection step, which should be very similar to the one depicted in Figure 2-10.

"The Intelli] IDEA download page is at https://www. jetbrains.com/idea/download/

39

(c) ketabton.com: The Digital Library
CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Ul Themes — Keymaps — Launcher Script — Default plugins — Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

) 1Y Wil

Build Tools Version Controls Test Tools
Ant, Maven, Gradle CVS, Git, GitHub, Mercurial, JUnit, TestNG-J, Coverage
Subversion
Customize... Disable All Customize... Disable All Customize... Disable All
1 &
. ' 3
Swing Android Other Tools
Ul Designer Android Bytecode Viewer, Eclipse, Java
Stream Debugger...
Disable Disable Customize... Disable All
4
&'
—
Plugin Development
Plugin DevKit
Disable
Skip Remaining and Set Defaults Back to Launcher Script Next: Featured plugins

Figure 2-10. Intelli] IDEA Community Edition configure plugins dialog section

In the previous image, two sections were underlined. The first section configures
build tools. If you click Customize... button, the window should change to show you the
plugins that are available for build tools. Make sure that the option for Gradle is checked,
as depicted in Figure 2-11, then click the Save Changes and Go Back button.

40

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

(2] @ Customize IntelliJ IDEA

Ul Themes —+ Keymaps — Launcher Script —+ Default plugins — Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

Build Tools
Ant Maven Gradle
Save Changes and Go Back Enable All Disable All

Figure 2-11. Intelli] IDEA Community Edition configure Gradle plugin

The second section configures support for versioning control systems. If you click
the Customize... button, the window should show you which plugins are available
for versioning systems. Make sure that the options for Git and GitHub are checked, as
depicted in Figure 2-12, and then click the Save Changes and Go Back button. If you go
another step forward, you get to another plugin screen that offers you the possibility to
install a plugin called IDE Feature Trainer. I think if you are a beginner, a plugin might
be very useful. The window is depicted in Figure 2-13

@ 0 Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script — Default plugins —+ Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

Version Controls

Cvs Git GitHub
Mercurial Subversion
Save Changes and Go Back Enable All Disable All

Figure 2-12. Intelli] IDEA Community Edition configure Git plugin

For the final step, click the Install button, and then Start using IntelliJ IDEA, and
you are all set up and good to go. Your development environment is fully configured and
ready for you to write your first Java program.

41

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

[RSN Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script = Default plugins — Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

Scala IdeaVim IDE Features Trainer

Custom Languages Editor Code tools

Plugin for Scala language support Emulates Vim editor Learn basic shortcuts and essential
IDE features with quick interactive
exercises

Recommended only if you are
% familiar with Vim.

Install Install and Enable Install

New plugins can also be downloaded in Preferences | Plugins

Skip Remaining and Set Defaults Back to Default plugins “Start using IntelliJ IDEA"

Figure 2-13. Intelli] IDEA Community Edition configure IDE Feature Trainer
plugin

But before doing that, let’s also cover how to retrieve the sources for the book.
There are three ways to get the sources for the book:
o Download the zipped package directly from GitHub.

e Clone the repository using a terminal (or Git Bash Shell in Windows)
using the following command:

git clone git@github.com:Apress/java-for-absolute-
beginners.git

e Clone the project using Intelli] IDEA. For this and cloning from
the command line, you need a GitHub user. The following images
show all the dialog windows that you see when cloning the project
with Intelli] IDEA. Figure 2-14 shows the window that you see after

42

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

you start an Intelli] IDEA instance that was never used. The project
is hosted on GitHub, so from the Check out from Version Control
menu, select GitHub. At this point, you to the next dialog window,
depicted in Figure 2-15.

@] Welcome to IntelliJ IDEA

IntelliJ IDEA

¢ Create New Project
¥ Import Project
Open

¥ Check out from Version Control ~

Git

¥ Configure ~ Get Help ~

Figure 2-14. Intelli] IDEA first dialog window to clone the java-for-absolute-

beginners project
| NN Login to GitHub
Host: github.com Auth Type: | Password
Login: iuliana

Password: o.-..o.c.col

Do not have an account at github.com? Sign up

T Save credentials Cancel Login

Figure 2-15. Intelli] IDEA second dialog window to clone the java-for-absolute-
beginners project

43

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

This requires you to insert your GitHub username and password (Auth Type:
Password). If you do not have a GitHub username, go to https://github.com to create
one. After clicking the Login button, the window depicted in Figure 2-16 is shown.

® e Clone Repository

Git Repository URL: | https://github.com/Apress/java-bgn.git E Test
Parent Directory: fUsers/iuliana.cosmina/apress/workspace/

Directory Name: java-bgn

2 Cancel

Figure 2-16. Intelli] IDEA third dialog window to clone the java-for-absolute-
beginners project

Click the Clone button and move on to the window depicted in Figure 2-17.

Checkout From Version Control

]IJ Would you like to create an IntelliJ IDEA project for
the sources you have checked out to
JUsersfiuliana. cosmina /apress/workspacefjava-bgn?

v) K23

Figure 2-17. Intelli] IDEA fourth dialog window to clone the java-for-absolute-
beginners project

Click Yes because you definitely need an Intelli] IDEA project for the sources. In
Figure 2-18, Intelli] IDEA has identified that the project might be configured with Gradle
and recommends to Import project from External model and select Gradle. Do so and
click Next.

44

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

[NN Import Project
Create project from existing sources

© Import project from external model

S Eclipse

(Gradle

? Cancel Previous m

Figure 2-18. Intelli] IDEA fifth dialog window to clone the java-for-absolute-
beginners project

The window depicted in Figure 2-19 is the last image before having a full-blown
local Gradle project. If you configured JAVA and Gradle properly, Intelli] IDEA finds and
selects them automatically for you.

e @ Impart Project

Gradle project: ~/temp/java-bgn

Use auto-import
Create directories for empty content roots automatically

Group modules: © using explicit module groups using qualified names

Create separate module per scurce set
Store generated project files externally
Use default gradle wrapper (not configured for the current project)
Use gradle 'wrapper' task configuration (@) Gradie wrapper customization in buid scriot

© Use local gradie distribution

Gradle home: U fiuli ina/Tools/gradie/current
Gradle JVM: ™= Lse Project JOK (java version "1.8.0_162", path: /Librar al...k1.8.0_162.jdk/Contents/Home) a
Preject format: .idea (directory based) E
* Global Gradie settings

? Cancel Previous

Figure 2-19. Intelli] IDEA last window to clone the java-for-absolute-
beginners project

45

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

And this is it. Starting in the next chapter, some code snippets are presented; so go
ahead and build the project. You can do this by executing the build task from Gradle
project view. Figure 2-20 shows the Intelli] IDEA editor with the project loaded and the

Gradle view opened.

[NoN] @. java-bgn [~/apress/workspace/java-bgn] - .../chapter00/src/mainfjava/com/apress/bgn/chO/Base.java [chapter00_main]

00) b src) B main) B java) B com) Bu apress) B bgn) Bucho) & 4} java-bgn [ouild] ~ | P K ¥E ¥ v @ Q

gw bz java-bgn ~/apress/workspace/js package com.apress.bgn.ch@; gj + @ E = ok B i

= .gradle L —— e

‘s .idea vimport ... v : ja:a:bgn o |
"% chapter00 ke v (- java;bin V

H a chapter01 = Created by iuliana.cosmind ‘ ‘_"“ asbs'ld

.E, » Iz chapter03 %/ | | v g bul

& # .gitignore 9 public class Base { 1F assemble

-
1

(= build.gradle
Contributing.adoc
»java-bgn.iml o
< java-for-beginners_small.png __
m LICENSE.txt :
README.adoc
(settings.gradle
lIlll External Libraries

private static Logger Loéf
private int secret = §;
public Base() { LOGGER.inf
Sk -

= method to print value @

)

public void printSecret()

class HiddenBase{
// you cannot see me

£* buildDependents
£+ buildNeeded
4 classes
£ clean
¥ jar
1’ testClasses

» I build setup

» I documentation

' help
> Bg other
> Bg verification
& Run Configurations

» (= :chapter00

[

Base >

* java-bgn [build]

:chapter@3:compileJava

¥+ :chapter@3:processResources NO-SOURCE
~o =s :chapter@3:classes
Fib ichaptere3:jar
:chapter@3:assemble
:chapter@3:compileTestlava NO-SOURCE
:chapter@3:processTestResources NO-SOURCE
:chapter®3: testClasses UP-TO-DATE

:chapter@3: junitPlatformTest
:chapter@3:test SKIPPED
:chapter@3:check UP-TO-DATE
£ schapter@3:build
]
E’ BUILD SUCCESSFUL in 3s
& 10 actionable tasks: 18 executed
* 12:57:27 AM: Task execution finished 'build’.
P &Run ®E:TODO Y 9:VersionControl [E Terminal % Build
O

(& :chapter01
(# :chapter03

(C] Event Log

914 LF: UTF-8¢ Git:masters & @

Figure 2-20. Intelli] IDEA Gradle project view with Tasks node expanded

46

(c) ketabton.com: The Digital Library

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Summary

If any of instructions are unclear to you (or I missed something), do not hesitate to use
the World Wide Web to search for answers. All the software technologies introduced in
this chapter are backed up by documented and comprehensive official websites and by
huge communities of developers eager to help. And in the worst-case scenario, you can
always create an issue on the Apress GitHub official repository for this book, or drop me
an email. I'll do my best to support you if need be.

But I think you will be fine. Java is hardly rocket-science.’*®

5Well, it wasn’t until Java 9. But this book should make it easier for beginner developers.

47

(c) ketabton.com: The Digital Library

CHAPTER 3

Getting Your Feet Wet

This is the last introductory chapter in the book. After this one, we get to the serious
business. The previous chapter left you with a complete development environment
configured for writing Java code. It is time to make use of it. The following topics are
covered in this chapter:

e Using]JShell

e Java fundamental building blocks: packages, modules, and classes
o Creating a Java project with Intelli] IDEA

o Compiling and executing Java classes

o Packing aJava application into an executable jar

e Using Gradle to automate compiling and test execution

Using JShell

Introduced in Java 9, the Java Shell tool (JShell) is an interactive tool for learning the
Java programming language and prototyping Java code. This means that you can write
Java code and execute it in the console, without the need to save it to a file, which is later
compiled into bytecode and then interpreted by the underlying OS as a sequence of
instructions to run to execute it. JShell is quite late to the party, as scripting languages
like Python and Node introduced similar utilities years ago, and JVM languages like
Scala, Clojure, and Groovy adopted it some time ago. But, better late than never is still
acceptable.

JShell is a Read-Eval-Print Loop (REPL), which evaluates declarations, statements,
and expressions as they are entered, and then it immediately shows the results. It
is practical to try new ideas and techniques quickly and without the need to have a
complete development environment or an entire context for the code to be executed in.

49

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_3

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

JShell is a standard component of the JDK and the executable to start it, is in the bin
directory located in the JDK installation directory. This means that all you have to do
is open a terminal (Command Prompt in Windows, and any type of terminal you have
installed on macOS and Linux) and type jshell. You should see something like this:!

$ jshell
| Welcome to JShell -- Version 10
| For an introduction type: /help intro

Go ahead and enter /help to view a list of all the available actions and commands.

jshell> /help
Type a Java language expression, statement, or declaration.
Or type one of the following commands:
/1ist <name or id»|-all|-start
list the source you have typed

|

|

|

|

| /edit <name or id>
| edit a source entry

| /drop <name or id>

| delete a source entry

| /exit <integer-expression-snippet>
| exit the jshell tool

To see exactly what JShell is doing, we can start it in verbose mode by adding -v as
an argument when starting it. Let’s play with a few numbers and see what happens. First,
let’s start the JShell in a verbose mode, so we’ll have a report log of everything that JShell
does when we insert statements. In your terminal, of enter java -v.

$ jshell -v
| Welcome to JShell -- Version 10-ea
| For an introduction type: /help intro

!Since this book covers Java notions up to Java 11, you can install JDK 11 and work with it, if it has
been released by the time you get this book. While writing the book, I installed a new JDK as soon
as it was available, but tried to keep the version 10 as a constant version throughout the book, as
to avoid confusion.

50

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

In Java, values are assigned to sequences of characters named variables. (More
about how to name them and use them in Chapter 4.) Next, let’s create a variable of type
integer (int in Java) and give it the value of 42. To do this, enter int i=42.

jshell> int i = 42
i==> 42
| created variable i : int

As you can see, the log message is clear and tells us that our command was executed
successfully and the variable of type int was created. The line 1 ==> 42 lets us know that
value 42 was assigned to the variable that we just created.

Let’s declare another one named j. In the code snippet, below 35 is the value that we
assign to it. But you can try different numbers if you want to.

jshell> int j = 35
j ==> 35
| created variable j : int

As long as the JShell session is not closed, the two previous variables still exist,
because we can further use them. Let’s add them together. The + operator sums two
integer variables in Java, just like in plain mathematics. Enteri + j.

jshell> i + j
$3 ==> 77
| created scratch variable $3 : int

As you can see, we added two variables but we did not store the result in a third,
thus JShell creates a scratch variable to store the result and print it in the log; but that
variable cannot be used in later statements, because it does not have a name.

All seems fine: variables are created and operations are executed correctly. Anything
that could be written in Java can be written in the JShell and executed.

51

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

I The building blocks of Java are named classes, which are pieces of code that
model real-world objects and events. Classes contain two types of members:
those modelling to states, which are the class variables, also named fields or
properties, and those modelling behavior, named methods. JDK provides a lot

of classes that model the base components needed to create most applications.
Classes are covered in more detail in the next chapter and you create a lot of them
while reading this book. Even if this terms and concepts seem foreign now, just be
patient, and let them add up; they will make more sense later.

In JShell, JDK classes can be used like java.lang.String (programming
components that you learn more about in Chapter 4), which is the Java class that
represents text objects. And their methods can be called. Let’s declare our first String
variable.

jshell> String text = "this is a text";
text ==> "this is a text"
| created variable text : String

We've just declared a variable of type String named text with the value of "this is
a text". The String class has many methods you can call to modify a text, let’s call one
with an obvious effect. Type text.toUpperCase().

jshell> text.toUpperCase()
$6 ==> "THIS IS A TEXT"
| created scratch variable $6 : String

The last statement is called a String method, which uppercases the variable
contents. But let’s see what happens when we introduce something that does not match
the Java syntax. Let’s call a method that does not exist for type String.

jshell> text.toAnotherUniverse()

| Error:

| cannot find symbol

| symbol: method toAnotherUniverse()
| text.toAnotherUniverse()

|

52

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

JShell is quite clear in telling us that the toAnotherUniverse() is unknown to it. Let’s
throw plain text in there. In the following, I tried "what is this?".

jshell> what is this?
| Error:

| ';' expected
| what is this?
|

A

In the first statement, we tried calling a method that is not defined for the String
class, and the error message was pretty relevant in regards to what we did wrong.
We can even create our own methods.

jshell> String createHello(String s){

...> return "Hello " + s;
o>}
| created method createHello(String)
jshell> createHello(text)
$8 ==> "Hello this is a text"
| created scratch variable $8 : String

Code completion? is also available in JShell. Take the text variable that we defined
earlier, for example; if we enter text then puta "." (dot) after it and then press the Tab
key, the list of available methods is listed, as depicted in Figure 3-1. If you type a few
letters from the method name, filtering is applied. JShell suggests only the method
names that start with that combination of letters. Pretty helpful, right?

2Also called code assistance

53

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

~— java « jshell -v
| Goodbye
[iuliana.grajdeanufROSBZM4044324X -~ - $ jshell -v
| Welecome to JShell -- Version l0-ea
| For an introduction type: /help intro

[ishell> String text="this is a text"
text ==> "this is a text"
| created variable text : String

jshell> text.

charat(chars() codePointAt (codePointBefore(codePointCount (
codePoints() compareTo(compareTolgnoreCase(concat (contains (
contentEquals(endsWith(equals|(equalsIgnoreCase| getBytes|(
getChars(getClass() hashCode() indexOf(intern()
isEmpty() lastIndexOf(length() matches (notify()
notifyAll() offsetByCodePoints(regionMatches(replace(replaceAll(
replaceFirst(split(startsWith(subSequence(substring(
toCharArray() toLowerCase(toString() toUpperCase(trim()

wait(

jshell> text.to
toCharArray() toLowerCase(toString() toUpperCase(

jshell> text.tof]

Figure 3-1. JShell lists methods possible to call on a String variable

If you want to see all variables you have declared in a JShell play session, you can do
so by executing the /vars command.

jshell> /vars
String text = "this is a text"

[]
[One]

|

| List<String> units
| List<String> list1
|
|

File f = .
Logger log = null

The preceding output corresponds to a sequence of statements executed in a JShell
console that looks like this:

jshell> String text = "this is a text"
text ==> "this is a text"

| created variable text : String

jshell> List<String> units = new Arraylist<>()
units ==> []

| created variable units : List<String>

jshell> List<String> listl = new ArraylList<>()
list1 ==> []

| created variable list1 : List<String>

54

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

jshell> listi.add("One");
$4 ==> true
| created scratch variable $4 : boolean
jshell> File f = new File(".")
f==>.
| created variable f : File
jshell> import java.util.logging.LogManager;

jshell> import java.util.logging.logger;

jshell> Logger 1 = LogManager.getlLogManager().getLogger("sample");
1 ==> null
| created variable 1 : Logger

If you want to save all your input from a JShell session, you can do so by executing
the /save [filename.java] command. It results in a file containing all Java statements
that you have executed with JShell within that session.

String text="this is a text";
List<String> units = new Arraylist<>();
List<String> list1 = List.of("One");
File f = new File(".");

import java.util.logging.logger;

import java.util.logging.LogManager;
Logger log = LogManager.getlLogManager().getLogger("sample");

Also, assuming the preceding output is a list of Java statements exported by JShell
to a file called sample. java, using the command /save sample.java, all of those
statements can be executed into a new JShell session using the /open sample.java
command. So, all variables will be created and we can use them in the new session.

There is a JShell complete user guide available on the Oracle official site if you are
interested in trying every command and every feature it has to offer.?

If you have opened your JShell and tried yourself some of the commands listed in
this section, you already got your feet wet with a little Java syntax. But there is a reason
that there is an entire chapter for that, but until then, it is more helpful to know the
building blocks of the Java ecosystem.

30racle JShell user guide: https://docs.oracle.com/javase/9/jshell/toc.htm
55

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Java Fundamental Building Blocks

I This is a consistent introduction into Java as a platform, but to write code
confidently, you need to have a grasp of what happens under the hood, what the
building blocks are, and how they are connected to each other. If you want, you
can skip the next section altogether, but in the same way some new drivers need
a little knowledge of how the engine works before grabbing the driving wheel,
some people might feel more confident and in control when programming if they
understand the mechanics a little. So, | wanted to make sure that anyone reading
this book gets a proper start.*

To write Java applications, a developer must be familiar with the Java building blocks
of the Java ecosystem. The core of this ecosystem is the class. There are other object
types in Java, but classes are the most important because they represent the templates
for the objects making up an application. A class groups fields and methods. When an
object is created, the values of the fields define the state of the object and the methods
describe its behavior.

I The Java object is a model of a real-world object. So, if we choose to model
a car in Java, we choose to define fields that describe the car: manufacturer,
modelName, productionYear, and speed. The methods of our car class describe
what the car does; and a car does mainly two things: accelerates and brakes.

All object types are described in files with the *. java extension. Object types are
organized in packages. A package is a logical collection of types, some of them are
visible outside the package, and some of them are not, depending on their scope.

A package is a hierarchy of directories, with the Java object types on the last level

(usually, but now always).

‘If you are worried that you will forget the keywords and meaning for modules, print the cheat
sheet at http://files.zeroturnaround.com/pdf/Rebellabs-Java-9-modules-cheat-sheet.
pdf and keep it handy.

56

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Package names must be unique and their name should follow a certain template.
Good practices say that to ensure unicity and meaning, you typically begin the name
with your organization’s Internet domain name in reverse order, then add various
grouping criteria. In this project, package names follow the template depicted here:

com.apress.bgn.ch[*]+

This template begins with the reversed domain name for Apress publisher (www.
apress.com), then a term identifying the book is added (bgn is a shortcut for beginner)
and at last the ch plus the number of the package the source (usually) matches.

Starting with Java 5, each package can contain a file named package-info. java that
contains a package declaration, package annotations, package comments, and Javadoc
tags. The comments are exported to the Javadoc for that package and you learn how
to generate that with Gradle later. The package-info.java must reside under the last
directory in the package. So, if we define a com.apress.bgn.ch3 package, the overall
structure and contents of the Java project looks like Figure 3-2.°

chapter03/

— chapter03.iml
— src

L— com
L— apress
L— bgn
L— ch3
— SimpleReader.java
L— package-info.java

Figure 3-2. Java package contents

The package-info.java contents could be similar to this:
/**
* Contains classes used for reading information from various sources.
* @since 1.0-SNAPSHOT
* @author iuliana.cosmina
* @version 1.0-SNAPSHOT
*/
@Deprecated
package com.apress.bgn.ch3;

*The chapter03.iml is an Intelli] IDEA project file.

57

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

The files with *. java extension containing the object types definitions are compiled
into files with *.class that are organized according to the package structure and
packaged into one or more JARs (Java Archives).5 For the previous example, if we were to
unpack the JAR resulted after the compilation and linkage, you would see what’s shown
in Figure 3-3.

chapter03-1.0-SNAPSHOT
— META-INF

| L— MANIFEST.MF
F— com

| L— apress

| —bgn

| L— ch3
| — SimpleReader.class
| L— package-info.class

Figure 3-3. Contents of a sample JAR

! package-info.java files are not mandatory, packages can be defined
without them. They are useful mostly for documentation purposes.

The code in one package might span multiple JARs, meaning if you have more than
one subproject” in your project you can have the same package name in more than once,
containing different classes. A symbolic representation of all the preceding is depicted in
Figure 3-4.

*When JARs are hosted on a repository, such as The Maven Public Repository, they are also called
artifacts.

Tam deliberately avoiding the term module for now to avoid confusion between project modules
and Java modules.

58

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Java Library

e
: Object Type 2

Object Type 3
Object Type 4

Object Type 5

Object Type 6

Figure 3-4. Java building blocks

A library groups one or more JARs.?

A Java application can make use of one or more libraries, and in order to be run,

needs all of its dependencies (all the JARs) on the classpath. What does this mean? It

means that to run a Java application, the JDK is needed, the dependencies (external

JARs) and the application jars. Figure 3-5 depicts this quite clearly.

Classpath

- App JARs

+ Dependencies
(more JARS)

y L

Figure 3-5. Classpath of an application

The JARs that make up an application classpath are (obviously) not always

independent of each other. For 21 years this organization style was enough, but in

complex applications there were a lot of complications caused by: packages scattered in

®The most popular are logging libraries like Log4]. (https://logging.apache.org/log4j/2.x/)
and Logback (https://logback.qos.ch/)

59

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

multiple jars, transitive dependencies between jars, which sometimes leads to different
versions of the same class on the classpath, missing transitive dependencies and
accessibility problems. All these problems are grouped under one name The Jar Hell.?
This problem was resolved in Java 9 by introducing another level to group packages, but
we should expect that there is The Module Hell at some point in the future.

Before introducing modules, access modifiers should be mentioned because Java
object types and members can declared with certain access rights within packages, and
that is something important to understand before jumping into coding.

Access Modifiers

When you declare an object type in Java (let’s stick to class because it is the only one
mentioned so far), you can configure who should be able to use it. Access modifiers specify
access to classes, and in this case, we say that they are used at the top-level. They can also
specify access to class members, and in this case, they are used at member-level.*

At top-level only two access modifiers can be used: public and none.

A top-level class that is declared public must be defined in a Java file with the same
name. So, the following class is defined in a file named Base. java stored under the com.
apress.bgn.cho package.

package com.apress.bgn.cho;

//top-level access modifier
public class Base {

The contents of the class are not depicted for the moment and replaced with . . . to stop
you from losing focus. A public class is visible to all classes anywhere. So, a different class, in a
different package can create an object of this type, like in the following sample code:

%A great article about The Jar Hell in case you want to know more, but you might want to read it
later, after you have written a little code of your own. See https://tech-read.com/2009/01/13/
what-is-jar-hell/

1T will not mention nested classes right now, as they are not really crucial for understanding this

section. But in the downloadable Appendix, there is a small section about nested and local
classes that you might find useful.

60

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET
package com.apress.bgn.ch3;

import com.apress.bgn.ch0.Base;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class Main {
public static void main(String... args) {
// creating an object of type Base
Base base = new Base();

I For now, let this affirmation sink in: a public class is visible to all classes
everywhere.

The option to not use an access modifier it is called using the default or package-
private modifier."! This means if a class has no access modifier, the class is only visible
to classes defined in the same package. A class without an access modifier can be
defined in any Java file, one that has the same name, or right next to the class that gives
the file its name. So, if we were to declare a class named HiddenBase in the Base. java file
as depicted in the following code snippet, trying to create an object of this type within
the Main class is not possible, because this class is in a different package.

package com.apress.bgn.cho;

public class Base {

}

class HiddenBase{
// you cannot see me outside the package

"I know it seems confusing that there are two names referring to the lack of access modifiers, but
as you might read other books or blog posts that refer to this situation, it is better to have all the
possibilities listed here.

61

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Sure, you can write the code, but the Java compiler will not compile it, and there is
no bytecode to execute. Also, smart Java editors very clearly show you the error of your
ways, by making your code red and refusing to provide any code assistance when writing
it. Figure 3-6 depicts how Intelli] IDEA tries to tell me that I'm doing something wrong in
trying to access a package-private class.

[] [] ® java-bgn [~/temp/java-bgn] - .../chapter03/src/mainfjavafcom/apress/bgnfch3/Main.java [chaptert
java-bgn) | | chapterD3 | src } I main) 0 java) BN com apress ' [0 bgn) ch3) & Main)
-g E Project - € == | - 1 sner00/../module-infojav: € Mainjava 2 chapter03/.../module-info.java # settings.gradie
'n_ java package com.apress.bgn.ch3;
&
— mm.aprﬁss.hgn.cho import com.apress.bgn.ch@.Base;
€ Base.java import com.apress.bgn.ch@.HiddenBase;
o € Base import org.slf4j.Logger;
2 & HiddenBase import org.slf4j.LoggerFactory;
,_72, i+ module-info.java et
"‘* resources * Created by iuliana.cosmina on 2/26/18
o logback.xml */
— public class Main {
rivate static Logger [OGCER = LoggerFactory.getl r{Base.class);
+: chapter00.gradle o 099 99 y-gettogge
. chapter03 public static void main{String... args) {
build Base base = new Base();
i HiddenBase hiddenBase = mew HiddenBase();
}
153 }
main
iava
com.apress.bgn.ch3
byeworld
helloworld
€ Main
4 module-info.java
resources
test

+' chapter03.gradle

Figure 3-6. Intelli] IDEA hinting that access to a package-private class leads to a

compilation error

In the same figure, the file containing the two classes is depicted in a rectangle to
attract your attention on how the editor is making it obvious that the two classes are

defined in the same Java file.

I For now, take this affirmation and let it sink in: a class with no access
modifier is visible to all classes in the same package.

62

(c) ketabton.com: The Digital Library

Inside a class, the class members are defined: fields and methods.'? Access

CHAPTER 3 GETTING YOUR FEET WET

modifiers can be applied to the class members as well, and at member-level, two

more modifiers can be applied: private and protected. At member-level, the access

modifiers have the following affects.

e public: The same as at top level, the member can be accessed from

everywhere.

o private: The member can only be accessed from within its own class.

o protected: The member can only be accessed from within its own

package or by any subclass® of its class in another package.

e none: The member can only be accessed from within its own package.

If it seems complicated, it’s only until you begin writing code and getting used to it.

On the official Oracle documentation page, there is a table with the visibility of members,

depicted here in this book as Table 3-1."

Table 3-1. Member-Level Accessors

Modifier Class Package Subclass World
public Yes Yes Yes Yes
protected Yes Yes Yes No
none (also referred to as default/package-private) Yes Yes No No
private Yes No No No

You will probably come back to this table once or twice after you start writing Java

code. Everything in this table is still valid after the introduction of modules, but only

once you properly configure module access, of course. 0

2Aside from that, we can also define other Java object types, which are referred to as nested, but

we'll cross that bridge when we come to it.
BCreating a subclass is covered in Chapter 5.

I depicted the table to avoid the hassle of navigating to this URL: https://docs.oracle.com/

javase/tutorial/java/javaOO/accesscontrol.html

63

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Introducing Modules

Starting with Java 9, a new concept was introduced: modules. They are used to group and
encapsulate packages. Implementation of this new concept took more than ten years. The
discussion about modules started in 2005, and it was proposed to be implemented for Java 7.
Under the name Project Jigsaw an exploratory phase started in 2008. Java developers
hoped a modular JDK would be available with Java 8, but it was made possible in Java 9,
after three years of work (and almost seven year of analysis). Apparently, this is why the
official release date for Java 9 was postponed to September 2017.%

Modules represent a new way to aggregate packages. A module is a way to group
them and configure more granulated access to package contents.

A module is a uniquely named, reusable group of packages and resources (XML
files) described by a file named module-info. java. This file contains the following
information:

¢ the module’s name

e the module’s dependencies (that is, other modules this module
depends on)

o the packages it explicitly makes available to other modules (all other
packages in the module are implicitly unavailable to other modules)

o the services it offers

¢ the services it consumes

e towhat other modules it allows reflection
¢ native code

e resources

o configuration data

In theory, module naming resembles package naming and follows the reversed-
domain-name convention. In practice, make sure that the module name does not
contain any numbers and that it reveals clearly what its purpose is. The module-info.
java file is compiled into a module descriptor, which is a file named module-info.

15The full history of the Jigsaw project can be found at http://openjdk.java.net/projects/
jigsaw/

64

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

class that is packed with classes into a plain old JAR file. The location of the file is in
the root sources directory, outside of any package. For the example introduced earlier, a
module-info.java was added and the new project structure is depicted in Figure 3-7.

chapter03/
L— src
F— main
F— java
F— com
[L— apress
L— bgn
L— ch3
— SimpleReader.java
L— package-info.java
L— module-info.java
L— resources

I
|
|
I
LI (]
[]
[
1

|

Figure 3-7. Structure of a Java 9 project

As any file with the *. java extension, the module-info. java gets compiled into a
*.class file. As the module declaration is not a part of Java object types declaration,
module is not a Java keyword, so it can still be used when writing code for Java object types.
For package, the situation is different, as every Java object type declaration must start with
a package declaration. Take a look at the SimpleReader class, declared as follows.

package com.apress.bgn.ch3;

public class SimpleReader {

private String source;

So, what does this actually mean? Where is the module and what is it? Well, in
simple projects that are made of one root directory with sources, modules do not have to
physically delimit or organize sources. ' They are defined by the contents of the module-
info.javafile. So, starting with Java 9, what is shown in Figure 3-4 evolves into Figure 3-8.

%Unless you rename directories containing sources for a module to the module name. Having
actual directories for modules is unavoidable when the sources in the root directory of a project
must be split into different modules.

65

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Java Library

JAR 1 JAR 2

Modufe 1 Module 2

Oogect Type 7 5
Coomot Tipe 2 i

JAR 3

Module 3

Object Type 4

|
: :

Figure 3-8. Java building blocks, starting with Java 9

In Figure 3-8, there is no need to create a directory for the module in JAR1 and JAR2.
For JAR3, there are two modules archived in the same JAR; in this case, we need to explicitly
separate their sources. The reason for this is the need to have two module-info. java files, and
obviously no operating system allows two files in the same directory to have the same name. An
example of such a project is covered in the Appendix , which is available as part of the book’s
source code download (https://github.com/apress/java-for-absolute-beginners).

The introduction of modules means the JDK is now divided into modules as well. This
means that the Java platform is no longer a monolith that consists of a massive number
of packages and making it challenging to develop, maintain, and evolve. The platform is
now split into 95 modules that can be viewed by executing java --list-modules (the
number might vary in Java later versions).

$ java --list-modules
java.base@10

66

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

java.compiler@10
java.datatransfer@10
java.desktop@10

Each module name is followed by a version string, @10, which means that the
module belongs to Java 10.

So, if a Java application does not require all modules, a runtime can be created only
with the modules that it needs, which reduces the runtime’s size. The tool to build a
smaller runtime customized to an application needs is called jlink, which is part of the
JDK executables. It allows larger levels of scalability and increased performance.*”

There are multiple benefits of introducing modules, that more experienced
developers have been waiting for years to take advantage of. But configuring modules for
bigger and more complex projects is no walk in the park, so for the time being, a simple
configuration for a module containing one package is covered. After finishing this book,
you are welcome to read the Appendix, where a more advanced module configuration is
covered, with examples for each of the possible module configuration is presented.

The contents of the module-info.java can be as simple as the name of the module
and two brackets.

module chapter.three {
}

Configuring Modules

Within those brackets, different module directives may be declared, using one of the
following keywords:

e requires

o exports
e module
e open

""How to use jlink is not an object of this book. The focus of the book is learning the Java
programming language; thus, the technical details of the Java platform will be kept to a
minimum, just enough to start writing and executing code confidently.

67

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

e opens... to
e provides ... with
e transitive

Each of them covers a specific behavior, but for a beginner, the most important two
are requires and exports.

Modules can depend on one another. For our example, classes inside the chapter.
three module need access to packages, and classes in the chapter.zero module.
Declaring a module dependency is done my using the requires keyword.

module chapter.three {
requires chapter.zero;

The preceding dependency is an explicit one. But there are also implicit
dependencies. For example, any module declared by a developer implicitly requires
the JDK java.base module. This module defines the foundational APIs of the Java SE
Platform, and no Java application could be written without it.

Declaring a module as required, means that that module is required at compile time
and runtime. If a module is required only at runtime, the requires static keywords are
used to declare the dependency. Keep that in mind for now; it will make sense when I
talk about web applications.

But is it enough to declare our module as dependent of another? Does this mean
that the dependent module can access all public types (and their nested public and
protected types)? If you are thinking not, you are right. Just because a module depends
on another, it does not mean it has access to the packages and classes that it needs to.
This is because the module it depends on must be configured to expose its insides. How
can that be done? In our case, we need to make sure module chapter.zero gives access
to the required packages. This is done by customizing the module-info. java for this
module by adding the exports directive, followed by the necessary package names.

module chapter.zero {
exports com.apress.bgn.cho;

68

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

By doing this we have given access to the com.apress.bgn.cho0 package to any
module that requires this package as a dependency. What if we do not want that?

I If you were curious and read the recommended Jar Hell article, you noticed
that one of the concerns of working with Java sources packed in Jars, was
security. Because even without access to Java sources, objects could be accessed,
extended, and instantiated by adding a Jar as a dependency to an application.

So, aside from providing a reliable configuration, better scaling, integrity for the
platform, and improved performance, the goal for introduction of modules was
better security.

What if we want to limit the access to module contents only to the chapter.three
module? This can be done by adding the to keyword followed by the module name to
the exports directive.

module chapter.zero {
exports com.apress.bgn.cho to chapter.three;

More than one module can be specified to have access by listing the desired

modules, separated by comma.

module chapter.zero {
exports com.apress.bgn.cho to chapter.three, chapter.two;

And that’s about all you need to know about modules for the moment.

Determining the Structure: A Java Project

I When this chapter was written, JDK 11 EAP has just been released. Shortly
after, Gradle version 4.9 and IntelliJ IDEA version 2018.2 were released and they
fully supported development using JDK 11. So, from this section onward Java 11
will be referred in the rest of the book.

69

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

There are a few ways Java projects can be structured. It depends on the project’s
scope and the build tool used.

You might wonder why does the project scope influence its structure because you
expect there should be a standard for this, right? Well, there is more than one standard,
and that is dependent on the project scope, because the scope, the reason for creating a
Java project influences its size. And if a project is small, it might not require you to split
the sources into subprojects, and you do not need a build tool either, and build tools
come with their own standard way of organizing a project. Let’s start with the smallest
Java project ever, which should print Hello World! to the console.

The HelloWorld! Project in IntelliJ IDEA

As a side note, you do not even need a project because you have JShell. Open a terminal
(Command Prompt for Windows) and JShell, and enter the System.out.print("Hello
World!") statement.

$ Jjshell
| Welcome to JShell -- Version 11-ea
| For an introduction type: /help intro

jshell> System.out.print("Hello World!")
Hello World!

Since you installed Intelli] IDEA, let’s create a Java project and check what project
structure the editor chooses for us. Start with the first Intelli] IDEA and click the Create
New Project option. A second dialog window appears on top with the types of projects
that you can create listed on the left. The two dialog windows mentioned here are
depicted in Figure 3-9.

70

(c) ketabton.com: The Digital Library

CHAPTER 3

IntelliJ IDEA

4+ Create New Project

L L New Project
% Java Project SDK: | = 11
) J2ME
M Clouds Kotlin DSL build script
#) Spring Additional Libraries and Frameworks:
. Java
= Java FX |
& Groovy
» Spring Initializr
.Q MD ° K Kotlin (Java)
M Maven
B CuE (ton
6 Groovy
Static Web
F Flash
K Kotlin
? Cancel

Figure 3-9. Create an Intelli] IDEA project

GETTING YOUR FEET WET

E New...

Select Java project type from the left and click Next. (Do not select any of the

additional libraries and frameworks, we are actually creating the smallest Java project

possible.) In the next dialog window, the project name and location can be introduced.

As we are creating a Java 11 project, you can notice at the bottom a section used to

configure the Java module. This configuration window is depicted in Figure 3-10.

71

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

[] [] New Project

Project name: sandbox

Project location: ~/apress/workspace/sandbox

|
|+ Mare Settings

Module name: sandbox

Content root: [/Users/iuliana.cosminalapress/workspace/sandbox
Module file location: /Users/fiuliana.cosmina/apress/workspace/sandbox

Project format: .idea (directory based)

? Cancel

Figure 3-10. Intelli] IDEA project configuration dialog window

After inserting the project and module name- we used sandbox for both project
name and module name- click Finish and the next window should be the editor
window, in which you can start writing code. If you expand the sandbox node on the left
(that section is called the project view), you can see that the project is built using the JDK
you have installed (in this case 11) and a src directory was created for you. Your project

should look a lot like the one depicted in Figure 3-11.

[NoN] sandbox [~/apress/worksp:
. sandbox |
£ Project = D & B -
E = sandbox ~/apress/workspacef/sandbox
& Il External Libraries
» = <11 > [Library/JavafJavaVirtualMachines/jdk-11.jdk/Contents/fHome
g‘ © Scratches and Consoles
L]
[

Figure 3-11. Intelli] IDEA project view

72

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Before writing code, let’s check out what other project settings are available. IntelliJ
IDEA provides you access to view and edit project properties through the File » Project
Structure... menu item. If you click it, a dialog window opens, similar to the one

depicted in Figure 3-12.

@ [] Project Structure
Project name:

Project Settin £andbok
Project SDK:

Modules This SDK is default for all project modules.
A module specific SOK can be configured for each of the modules as required.

Libraries

11 (java version "11 New... i
Facets € eV vy B [New ot
Artifacts Project language level:

This language level is default for all project modules.
Platform Setti A module specific language level can be configured for each of the modules as required.

SDKS == SDK default (11 : x la p : &

Global Libra g _ @0override in interfaces
I 7- Diamonds, ARM, multi-catch etc.
Problems 1 8 - Lambdas, type annotations etc.
1

9 - Modules, private methods in interfaces etc.

: 3 Jction code
10 - Local variable type inference

ocal variable syntax fo r modules as
t 1-preview - Raw string literals
X - Experimental features
Juser il uyapr i il

Figure 3-12. Intelli] IDEA project settings tab

By default, the Project settings tab is opened. In Figure 3-12, there are two arrows
attracting your attention to the Project SDK: section, which is depicting the JDK version
for a Java project, and the Project language level: section. At the time this chapter was
written, JDK 11 EA was the most recent version. The most recent version of Intelli] IDEA
supports syntax and code completion for Java 11, which is why it is depicted here. This is
the meaning of the project language level setting.

If you switch to the tab named Modules you see the information depicted in Figure 3-13.

73

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

o] @ Project Structure
- + - B
Name: sandbox
- . . sandbox
Project Settin
Project Sources Paths Dependencies
ﬁm Module SDK: = Project SDK (17 B | New. Edit
loraries
Facets Export Scope
Artifacts B= 11 (java version *11%)
Pl m s ot <Module source>
SDKs
Global Libra
Problems
+ v
Dependencies storage format: IntelliJ IDEA (.iml) E
? Cancel [oK |

Figure 3-13. Intelli] IDEA modules settings tab

I Let’s clarify something first. The Modules tab does not show information
about Java modules in your project. Aside from Java modules, that wrap packages
together; a module is also a way to wrap up Java sources and resource files

with a common purpose within a project. That is why, before Oracle introduced
the module concept to modularize Java applications, the code making up these
applications was already modularized by developers that needed to structure big
projects in some practical way.

In the Modules tab, you can see the number of parts (modules) that a project has and
the settings for each part. The sandbox has one part: one module named also sandbox
and the source for this module is contained in the src directory. So, if we want to write a
class that prints Hello World!, the file called HelloWorld. java must be placed under it. If
you right-click the src directory, the menu depicted in Figure 3-14 appears.

74

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

[NoN] sandbox [~/apress/workspace/sandbox]
g sandbox ; [src) i v
g OPrject ~ Q & | %I
E v Iz sandbox ~/apress/workspace/sandbox
i » [.idea _
- Bm sre N
L New > Java Class
% v Il Exti Vel a8y ¢ Kotlin File/Class
g » =i - 2 File
m B
;‘ o g:ﬁy ot 0:2 = Scratch File {+$8N
y
Package <=
Copy Reference N4 C | . g.
e sy e FXML File
o | a4 package-info.java —
Find Usages _F7 & module-info.java
Find in Path... ¢ ¥F = LTML File
Replace in Path... ¥R T —
i R L , JavaFXApplication
alyze s Singleton

Figure 3-14. Intelli] IDEA menu listing which Java objects can be created in the
src directory

Aside from the Java Class option, there are a few red arrows showing you what other
components can be in the src directory. Let’s go ahead and create our class. Click the
Java Class menu option, and after introducing the class name, expand the Kind: drop-
down list. Figure 3-15 shows the expanded list.

[0} @ Create New Class

Name: HelloWorld Tl

Kind: | © Class B

I Interface

E Enum

‘ @ Annotation r'
i JavaFXApplication
4 Singleton

Figure 3-15. Intelli] IDEA dialog windows to create a Java data type

75

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

The core building block of a Java application is the Java class, but there are other
object types in Java. In the Kind: list, the four Java object types are listed. Each of them
is explained in detail later; for now, select Class and click the OK button. You notice that
a file named HelloWorld. java was created under the src directory and the contents of
that file are quite simple.

/**

* Created on 3/3/18.

*/

public class HelloWorld {

}

You have created your first Java class in your first simple Java project. It does
nothing yet. But it can be compiled by selecting from the Intelli] IDEA Build menu, the
Build Project option, or by pressing a combination of keys, that is different for each
operation system. Compiling the Build Project option produce the HelloWorld.class
file, containing the bytecode. By default, Intelli] IDEA stores compilation results into a
directory named out\production. The menu option for compiling your project and the
result are depicted in Figure 3-16. The menu option is marked with (1).

76

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

@ IntellJIDEA File Edit View Navigate Code Analyze Refactor [ENE]| Run Tools VCS Window Help

.. ST .

Build Project Bro §
Build Module 'sandbox’
Recompile 'HellowWorld.java' {+3rs
Rebuild Project

Generate Ant Build...

f : S [sandbox]

[oW] [® sandbox [~/apr
¥a sandbox) I src) @ HelloWorld)
B Project - D | I

= sandbox ~/apress/workspacefsandbc 1

Z o ey r
5 -
€ HelloWorld java
ok

» .idea * Created by iuliana.cosmina on 3/3/18.
< . */
3 oM 5 public class HellowWorld {
v B production c
g v I sandbox 6 }
£ . €} HelloWorld.class 7 Copy Reference To®C
£ S0 [l Paste Ry
2 . :’:Ilo\'\'.folrld Paste from History... 134
g e e Paste Simple XO®V
£ » ||l External Libraries .
5 Column Selection Mode {38
-]
w
L] Refactor >
*
[0:Messages 2 6:TODO [E Terminal Folding :
E compilation fully in 25 11Ims (a minute age Analyze
Go To >
Generate... #EN
Recompile 'HelloWorld.java' {+38F9
Local History >

I3+ Compare with Clipboard
File Encoding

® Create Gist...

Figure 3-16. Intelli] IDEA—how to compile a Java project

When you have more classes in your project, you can compile the one you modify by
right-clicking the class body and choosing Recompile [ClassName].java, marked with (2)

in Figure 3-16.

It is time we make the class print Hello World!. For that we need to add a special

method to the class. Any Java desktop application has a special method named main that

has to be declared in a top-level class. This method is called by the JRE to run the Java

program/application and I call it the entry point. Without such a method, a Java project

is a collection of classes that are not runnable, cannot be executed, and cannot perform

certain functions. Imagine it this way: it’s like having a car, but you have no way of

starting it, because the ignition lock cylinder is missing. By for all intents and purposes,

77

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

itis a car, but it cannot perform the main purpose of a car, which is to take you somewhere.
You can imagine the main method as the ignition lock cylinder, where the JRE inserts the
key to get your application running. Let’s add that method to the HelloWorld class.'®

Ve
* Created on 3/3/18.

*/

public class HelloWorld {

public static void main(String... args) {
System.out.println("Hello World!");

Now, let’s run this class. In Intelli] IDEA, you have also two options: from the Run
menu choose the Run '[ClassName]' option, or right-click the class body and select
Run '[ClassName]'.main() from the menu that appears.'

Figure 3-17, depicts the menu items that you can use to execute the class, as well as
the result of the execution.

8Because Intelli] IDEA is an awesome editor, you can generate the main method, by typing psvim
and pressing the Tab key.

“Next to the Run menu item, a combination of keys is depicted that can be used to run the class.

78

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

& IntelliJIDEA File Edit View Navigate Code Analyze Refactor Build [T Tools VCS Window Help

[NoN] (% sandbox [~/apress/wor isandbeix] - .../src/Hellowd Run 'HellowWorld" “R
2 sandbox src) (€ HelloWerld #k Debug 'HelloWorld' apiliG
& Proj G ok | 1| @ HolloWord] ¥ Run "HelloWorld" with Coverage
§ roject v 5 %) | (ol orid.java ’ Run... A‘\-.R
g % sandbox ~/apress/workspace/sandbc Sk ﬁ Debug AND v
= .idea 2 « Created by iuliana.cosmina on 3/3
. ? «/
°"‘pr°d o . b public class HelloWorld {
ucti .
g_ sandbox I public static void main{String... args) {
g ¢} HelloWorld.class System.out.printin{"Hello World!");
5 src : } }
%1 €' HelloWorld
» Sandbox.iml B .
il External Libraries Recompile 'HelloWorld java' {38F9
Run 'HelloWorld.main{)’ ~OR
#& Debug 'HelloWorld.main()' ~0D
¥% Run 'HelloWerld.main()' with Coverage
HelloWorld
Run HelloWorld B- L
> /Library/Java/JavaVirtualMachines/jdk-1@. jdk/Contents/Home/bin/java "-javaagent:/Applications/Intellil IDEA CE.app/Contents/li
Hello World! f————Fxecution result
—, Process finished with exit code @
2 (=1
E =
a oo 'ﬁ‘
="
i 0:Messages | PP &Run “®6:TODO [E Terminal () Event Log

Figure 3-17. Intelli] IDEA—how to execute a Java class

So, this is the most basic structure for a Java Project. This project is so simple that it

can also be compiled manually from the command line. So, let’s do that.

The HelloWorld! Project Compiled and Executed Manually

You've probably noticed the Terminal button in your Intelli] IDEA. If you click that
button, inside the editor a terminal window will be opened. For Windows it is a
Command Prompt instance, for Linux and macOS are the default shell. And Intelli] open
your terminal right into your project root. The following explains what you have to do.

1. Enter the src directory by executing the following command:
cd src

cd is a command that works in Windows and Unix systems and is

short for change directory.

2. Compile the HelloWorld. java file by executing:

javac HelloWorld.java

79

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

javac is a JDK executable used to compile Java files that Intelli] IDEA
calls in the background.

3. Run the resulting bytecode from the HelloWorld. class file by

executing:
java HelloWorld

Figure 3-18 depicts the execution of those commands in a terminal in Intelli] IDEA.

[NN] |% sandbox [~fapress/workspace/sandbox] - .../src/HelloWorld.java [sandbox]
% sandbox) [src 4 Helloworid ~ | P #iE ¥Z @ Q

[Project o £ €' Helloworld.java
g = sandbox ~/apress/workspac - v
= .idea y * Created by iul cosmina on 3/3/18.
e src */

S blic class HellowWorld
1 ¢ HelloWorld PR %
3 o Helloworld.class > | public static void main(String... args) {
E » sandbox.iml System.out.printin("Hello World!");
f: Il External Libraries * | }
HelloWorld
Terminal e L

4+ iuliana. cosmina @ROSBZM4B44324X ~/apress $ cd src

E % iuliana. cosmina 1@ROSBZM4Q44324X ~/ $ javac HelloWorld. java
§ iuliana. cosmina @ROSBZM4@44324X ~/apre $ java HellowWorld
ﬁ Hello World!
% iuliana. cosmina @EROSBZM4044324X ~/apress/workspace/sandbox/src s
i 0:Messages P 4 Run 2 6:TODO | [B Terminal (] Event Log
[synchronize 'sre' completed successfully. 86 LF: UTF-8: & &

Figure 3-18. Manually compile and run the HelloWorld class in a terminal inside
Intelli] IDEA

Looks simple, right? And it actually is simple, because no packages or Java modules
were defined. But wait, is that possible? Well, yes. If you did not define a package, the
class is still part of an unnamed default package that is provided by default by the JSE
platform for the development of small, temporary, and educational applications like the
one you are building. So, let’s make our project a little bit more complicated and add a

named package for our class to be in.

80

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Putting the HelloWorld Class in a Package

In Figure 3-14, there is a Package option in the menu. So right-click the src directory
and select it. A dialog window appears where you must enter the package name. Enter
com.sandbox. Figure 3-19 shows the dialog windows. Even though the package was
already created, I introduced the same name again to show how the IDE warns that you

are trying to create a package with the same name.

. sandbox) " src)
3 7 Project - 0 == | ¥~ I+ @ Helloworld.java
g = sandbox ~/apress/workspace/sandbc /40K
- .idea z * Created by iuliana.cosmina c
L} i
ot I public class HelloWorld {

o src 3 public static void main(Str
= com.sandbox System.out.printin("Hel
é ¢’ HelloWorld ' }
,;w;, u Sandbox.iml }
9 Il External Libraries

@0 New Package

Enter new package name:

IJ

com.sandbox

A directory with name 'sandbox’ already exists

Cancel ﬁ

Figure 3-19. Create package in Intelli] IDEA

So, we created the package, but the class is not in it. Well, the way to get it there, is
to select it and drag it into it. A dialog window for moving the class appear, because the
editor must modify the class to make it to belong to the package by adding a package
statement. And it requires your approval for the operation. Figure 3-20 depicts this dialog

window.

81

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

- sandbox ; I src) € HelloWorld
32 Project - (s T - T £ HelloWorld.java
g. = sandbox ~/apress/workspace/sandbox [sick
i .idea i g Created by iuliana.cosmina on 3/3/18.
" 3 it 3 *f :
N 1 b public class HellowWorld {
¢ src » public static void main(String... args) {
- System.out.printin("Hello World!");
2 @ HelloWorld - }
f:. u Sandbox.iml }
& |l External Libraries
@ 0 Move

Move class HelloWorld
To directory: .grajdeanufapress/workspace/sandbox/src/comjsandbox
Search in comments and strings Search for text occurrences

Open moved classes in editor

? Cancel Preview BLEECIS
Figure 3-20. Moving a class into a package in Intelli] IDEA

Click the Refactor button and look at what happens to the class. The class should
now start with a package com.sandbox; declaration. If you rebuild your project, and
then look at the directory structure, you see something similar to what is depicted in
Figure 3-21.

iuliana. cosmina @ROSBZM4044324X ~/apress/workspace/sandbox $ tree

}— out

| L— production

L— sandbox
L— com

|
I
| L— sandbox
| L— HelloWorld.class

}— sandbox. iml
L— src

L— com
L— sandbox
L— HelloWorld.java

8 directories, 3 files

Figure 3-21. New directory structure after adding the com.sandbox package

82

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

If you compile and execute the class manually, you must consider the package now,
so your commands change to

~/sandbox/src: $ javac com/sandbox/HelloWorld.java
~/sandbox/src: $ java com/sandbox/HelloWorld
Hello World!

But things do not end here, because we still have Java modules. So, what about
that? How is our code running without a module-info. java file? Well, there is a
default unnamed module, and all JARs, modular or not, and classes on the classpath
are contained in it. This default and unnamed module exports all packages and reads
all other modules. Because it does not have a name it cannot be required and read by
named application modules. Thus, even if your small project seems to work with JDKs
in versions 9 and higher, it cannot be accessed by other modules; but it works because it
can access others. (This ensures backward compatibility with older versions of the JDK,
but depending on the complexity of the project, compatibility is not always ensured.)
This being said, let’s add a module to our project.

Configuring the com.sandbox Module

Configuring a module is as easy as adding a module-info. java file under the src directory.
In Figure 3-14, in the menu listed there is amodule-info. java option and if you select
that, the IDE generates the file for you. All is well and fine, and if you do not like the
module name that was generated for you, you can change it. I changed it to com. sandbox
to respect the module naming convention established by Oracle developers.

/**

* Created on 3/3/18.
*/
module com.sandbox {

}

What happens now that we have a module? Not much from the IDEs point of view.
But if you want to compile a module manually, you have to know a few things. I compiled
our module using the following command:

~/sandbox/sxrc/: $ javac -d ../out/com.sandbox \
module-info.java \
com/sandbox/HelloWorld. java

83

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

I "\"is amacOS/Linux separator. On Windows, either write the whole command
on a single line or replace "\" with "~".

Let me explain what I did there. The syntax to compile a module is this:

javac -d [destination location]/[module name] \
[source location]/module-info.java \
[java files...]

The result of executing that command is that a directory named com. sandbox in the
out directory is created—the module name. Under this directory, we have the normal
structure of the com. sandbox package. The contents of the out directory are depicted in

Figure 3-22.
Termiral
+ iuliana. cosmina @ROSBZMABA4324X ~/apress/workspace/sandoox/src § javac -d ..fcut/com.sandbox module-info.java com/sandbox/HelloWerld. java
% iuliana. cosmina \(@ROSBZMA044324X ~/ap rks ndk $ cd .. out/
iuliana. cosmina @ROSBZM4044324X ~/apress/workspace/sandbox/out $ tree

L— com, sandbox
— com
| — sandbox
| L— Helloworld. class
— module-info.class

3 directories, 2 files
iuliana.grajdeanuaR0SB2M4044324X ~/apress/workspace/ sandbox/ou S

8 O:Messages P &:Run 2 8:TODO | B Terminal) Ev

Figure 3-22. Java module com.sandbox compiled manually

As you have noticed in this example, the module does not really exist until we
compile the sources, because a Java module is more of a logical mode of encapsulating
packages described by the module-info.class descriptor. The only reason the com.
sandbox directory was created is that we specified it as argument in the javac -d
command.

We have a compiled module, what do we do with it? We try to run the application
obviously.

sandbox/: $ java --module-path out \
--module com.sandbox/com.sandbox.HelloWorld
Hello World!

84

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET
The syntax to execute a modular application is this:

java --module-path [destination location] \
--module [module name] /[package name].HelloWorld
Hello World!

Regarding the module name, doesn’t it seem a little redundant? To me it sure looks
like it, which is why I prefer not to create directories for modules unless I have more of
them under the src directory. And we must talk about the standard naming conventions
for modules. That is also another thing that might give developer headaches if they
want to create directories for modules. In multiple blog articles and Oracle Magazine
(September 2017), this is recommended.?’ But do not worry about it for now; the book’s
sources contain modules with simple names, and the module configuration is already in
place for you.

Java Projects Using Build Tools (Mostly Gradle)

Maven is a build automation tool used primarily for Java projects. Although Gradle is
gaining ground, Maven is still one of the most used build tools. Tools like Gradle and
Maven are used to organize the source code of an application in interdependent project
modules and configure a way to compile, validate, generate sources, test, and generate
artifacts automatically. An artifact is a file, usually a JAR, that gets deployed to a Maven
repository. A Maven repository is a location on an HDD where JARs are saved in a special
directory structure.

The discussion about build tools must start with Maven, because this build tool
standardized a lot of the terms we used in development today. Gradle respects a lot of
Maven standard rules was chosen as the go-to build tool for the sources attached to this
book, because it is easier to configure and the configuration files are reduced in size. A
project split into multiple subprojects can be downloaded from GitHub, and built in the
command line or imported into Intelli]. This approach makes sure that you get quality
sources that can be compiled at once. It is also practical, because I imagine you do not
want to load a new project in Intelli] IDEA every time you start reading a new chapter.
Also, it makes it easier for me to maintain the sources and adapt them to a new JDK, and
with Oracle releasing so often, I need to be able to do this quickly.

2QOracle Magazine from September 2017 can be accessed at http://www.javamagazine.
mozaicreader.com/SeptOct2017#&pageSet=298&page=0

85

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

The project you use to test the code written in this book and write your own code
if you want to, is called java-for-absolute-beginners. It is a multimodule Gradle
project. The first level of the project is the java-for-absolute-beginners project, that
has a configuration file named build.gradle. In this file, all dependencies and their
versions are listed. The child projects, the ones on the second level, are the modules of
this project. And we call them child projects because they inherit those dependencies
and modules from the parent project. In their configuration files, we can specify which
dependencies are needed from the list defined in the parent. And these modules are
a method of wrapping up sources for each chapter and that is why these modules are
named chaptero00, chapter01, and so forth. If a project is big and needs a lot of code to
be written, the code is split again in another level of modules. Module chapter05 is such
a case, and is configured as a parent for the projects underneath it. In Figure 3-23, you see
what this project looks like loaded in Intelli] IDEA, and module chapter05 is expanded
so you can see the third level of modules. Each level is marked with the corresponding
number.

86

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Q @® B java-for-absolute-beginners [~/apress/workspace/java-for-absolute-beginners] - ..
» lava-for-absolute-beginners) B A ReactorDemo v P

Project + 0 = =

v java-for-absolute-beginners - /¢ press/workspacefjava-for-absolute-beginners
.gradle

I 1:Project

»
» .idea
» 5 chapter00
» 5 chapter01
v [z chapter03
» build
4 out
3 src
¥ chapter03.gradle
= Chapter04
= Chapter05 (2)
» [arrays
» [calendar-date
» [collections (3)
» 14 concurrency
>
3

Learn

4

= Primitives
. references
@ chapter05.gradle
» 5 chapter06
» [chapter07
» chapter08
» 5 chapter09
» 5 chapter10
» 5 chapterl
» [chapter12
» 5 chapter13
.gitattributes
= .gitignore
= 9781484237779.jpg
build.gradle
4 Contributing.adoc
'sd errata.adoc

m java-bgn.iml
= java-for-beginners.png
= LICENSE.txt
'sa README.adoc
¥ settings.gradle
« |l External Libraries
» P <11 > [Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

Z: Structure

Figure 3-23. Gradle multimodule-level structure

87

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

In the Appendix you can read a detailed explanation for the configuration of this
Gradle project. For now, if you have loaded it into Intelli] IDEA as you were taught in
Chapter 2, you can make sure everything is working correctly by building it. Here’s how
you do it.

You can do it by using the Intelli] IDEA editor, in the upper right side you should
have a tab called Gradle projects.

If the projects are loaded as they are depicted in Figure 3-24, the project was loaded
correctly. If the Gradle projects tab is not visible, look for a label like the one marked

with (1), and click it.

@® © @ [¥ java-bgn [~/

sre main |

:

=

- java

B°Prx € 5 | %~ I
s java-bgn ~/apress -
.gradle
.idea
% chapter00 »
% chapter01
% Chapter03
build
out
src
(= chapter03.g
3 chapter04
= chapter05
3 collections
& data-structu
s data-types
% primitives
(** chapter05.gt
% chapter08
% chapterQ?
java-bgn [build]

1 com

! }

Run

3 Z: Structure

]
1%

apress
€ seriglizationDem 0 java
package com.apress.bgn.chll;

3» pi:hlic class BerializationDemo { ¥ (& java-bgn

SerializationDemo

bgn] - ...[chapter11/seriali
bgn |

ess/bgn/ch11{Seriali

| K

Vst Demo.java [serialization_main]
Yyvyes:aaq

%- [}

ch11) € SerializationDemo)} 3§ java-bgn [build] «

~E& Gradle projects

Vi + &: 3 F

W B

v (# java-bgn (root)
o Tasks
& build
11 assemble
@
4¥ buildDependents
4 buildNeeded
4 classes
¥ clean
45 jar
11 tesiClasses
& build setup
& documentation
& help
% other
5 verification

public static void main{Stri
System.out.println("“Here

M

read-write-file:testClasses UP-TO-DATE
read-write-file: junitPlatformTest UP-TO-DATE
read-write-file:test SKIPPEZD
read-write-file:check UP-TO-DATE
read-write-file:build UP-TO-DATE

:chapteril:
:chapteril:
:chapterll:
:chapteril:
ichapterll:

:chapterll:
:chapterll:
ichapterll:
:chapterll:
:chapteril:
ichapterll:
:chapteril:
ichapterll:
:chapterll:
:chapteril:
schapterll:
:chapteril:

serialization:
serialization:
serialization:
serialization:
serialization:
serialization:
serialization:
serialization:
serialization:
serialization:
serialization:
serialization:

compileJava UP-TO-DATE
processResources NO-SOURCE
classes UP-TO-DATE

jar UP-TO-DATE

assemble UP-TO-DATE
compileTestJava NO-SOURCE
processTestResources NO-SOURCE
testClasses UP-TO-DATE
junitPlatformTest UP-TO-DATE
test SKIPPED

check UP-TO-DATE

build UP-TO-DATE

BUILD SUCCESSFUL in @s

3% 2: Favorites

P &Run %36 TODO

(]

4 9: Version Control [Terminal

—to-date

12:26:13 AM: Task execution finished 'build'.

1% Build) Event Log

ool

The modules below are not i

p from Gradle any P ! p

_main [f /{ Open ... (40 minutes ago) 314 LF: UTF-8¢ Git:masters B &

Figure 3-24. Gradle multimodule-level structure

88

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Expand the java-for-absolute-beginners(root) node until you find the build
task, marked with (2). If you double click it and in the view at the bottom of the editor
you do not see any error, all your projects were built successfully.

The second way to make sure the Gradle project is working as expected is to build
it from the command line. Open an Intelli] IDEA terminal, and if you installed Gradle
on the system path as explained in Chapter 2, enter gradle clean build and hit the
Enter key. In the command line, you might see some warnings, if the Gradle plugin for
supporting Java modules is still unstable when this book reaches you, but as long as the
execution ends with BUILD SUCCESSFUL, everything is alright.

Aside from the sandbox project, all the classes, modules, and packages mentioned
in this section are part of this project. chapter00 and chaptero1 do not really contain
classes specific to those chapters. I needed them to construct the Java module examples.
Intelli] IDEA sorts modules in alphabetical order, so the naming of the chapter modules
was chosen this way. They are listed in the order that you should work with them. Until
now, this chapter was focused on the building blocks of Java applications, and you
created a class that prints Hello World! by following the instructions, but the details were
not really covered. Let’s do that now and enrich the class with new details.

Explaining and Enriching the Hello World! Class

We wrote a class named HelloWorld in our sandbox project. I propose you to add that
class to the chapter03 module. Just copy it or create it under the com.apress.bgn.ch3.
helloworld package, and let’s analyze it first and then see what more can we do with it.
In Figure 3-25, the class is depicted in the Intelli] IDEA editor, and a few details about the
IDE are underlined. Let’s talk about the class first.

89

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

O @ ¥ java-bgn [~/apress/workspace/java-bgn] - .../chapter03/src/mainfjava/com/apress/bgn/ch3/helloworld/HelloWorld...

. java-bgn ; | chapter03 src ; [main

E B Project -
E = java-bgn ~/apress/worl
i .gradle

L .idea

>

.

% chapter00
& chapter01
= chapter03
1 build
out
src
% main
java
com.apress.bgn.ch3
byeworld
helloworld
e HelloWorld
€' Main
i module-info.java
resources
5 test
chapter03.gradle

13 7: Structure

java

cor 4 # ¥

[eiowors -] »]

€ Helloworld.java

package com.apress.bgn.ch3,helloworld]

public class HellowWorld {
public static void main{String[) args) {

System.out.printin{"Hello World!");

ul :{ Qs

Run Button +

Run
Configuration

Figure 3-25. Adding HelloWorld to the java-for-absolute-beginners project

The following explains the lines that contain different statements.

o the package declaration: When classes are part of a package their

code must start with this line that declares the package the class is

part of. The package is a reserved keyword in Java and cannot be used

for anything else but declaring a package.

o <empty for convenience> (left empty so the picture looks nicer)

« the class declaration: This is the line where we declare our class;

itis public so it can be seen from everywhere; it is a class named

HelloWorld. The body of a class is enclosed between curly brackets,

and the opening bracket is on this line as well.

o the main() method declaration: In Java, a method signature is the

method name and the number, type, and order of its parameters.

A method also has a return type, as in the type of result it returns.

But there is also a special type that can declare methods that do not

return anything. In order of appearance, the following explains what

every term of the main() method represents.

90

S @Q

>

a|peio

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

e public: A method accessor; the main method must be public;
otherwise, JRE can’t access it and call it.

o static: When an object of that class type is created, it has the fields
and methods as declared by the class. The class is a template
for creating objects. Because of the static keyword, the main
method is not associated with an object of a class type, but with
the class itself. More information about this in Chapter 4.

o void: This keyword is used here to tell us that the main method
does not return anything, so it’s like a replacement for "no type",
because if nothing is returned there is no need for a type.

e String[] args: Methods are sometimes declared as receiving
some input data, String[] args represents an array of text
values. (Arrays are sets of data of fixed length; in mathematics
they are known as a one-dimension matrix or vector.) String
is the class representing text objects in Java. The [] means array
and args is its name. But wait, we’ve run this method before and
we did not need to provide anything! Well, it is not mandatory,
but you'll see how you can give it arguments (values provided to
the method, which are used by the code in its body) after this list.

I In previous code samples, you might have noticed that the main method was
written like this:

public class HelloWorld {

public static void main(String... args) {
System.out.println("Hello World!");

}

The three dots are referred to as varargs and allow you to pass more than one
string to the method. It’s an alternative way of writing this method and it is used
in the book when the sources require some special formatting that involves [].

o {: The starting bracket of the main() method body.

o <empty for convenience> (left empty so the picture looks nicer).
91

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

e System.out.println("Hello World!");: A statement used for writing
Hello World in the console.

o }: The closing bracket of the main() method body.
e }: The closing bracket for the class body.

If we execute this class, Hello World! gets printed in the console. Figure 3-17 shows
how to execute a class with amain() method in it. After executing a class that way, Intelli]
IDEA automatically saves the configuration for that execution in a run configuration and
displays it in a drop-down list next to a triangular green button that executes that class
by clicking it. Both are placed on the IDE header and ostentatiously pointed to you in
Figure 3-25. Those two elements are really important because a run configuration can be
edited and added arguments for the JVM and the main() method. Let’s first modify the
main() method to do something with the arguments.

package com.apress.bgn.ch3.helloworld;

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello " + args[o] + "!");

I Arrays are accessed using indexes of their elements, and the counting starts

in Java from 0. Consequently, the first member of an array can be found at 0, the
second at 1 and so on. But arrays can be empty, so in the previous code snippet, if
no argument is specified, the execution of the program crash and in the console an
explicit message are printed in red.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
at chapter.three/com.apress.bgn.ch3.helloworld.HelloWorld.
main(HelloWorld.java:5)

When we try to access an empty array, or an element of an array that

does not exist, Java programs crash and the JVM throws an object of type
ArrayIndexOutOfBoundsException containing the line where the failure
happened and the index of the element we were trying to access. Exception

92

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

objects are used by the JVM to notify developers of exceptional situations when a
Java execution does not work as expected and these objects contain information
on where in the code it happened and what caused the problem.

The modification we did in the previous code snippet prints the text value provided
as argument when executing the class. Let’s modify the run configuration for this class
and add an argument. If you click the small gray arrow next to the Run configuration
name, a menu appears. Click Edit Configurations... and inspect the dialog window
shown in Figure 3-26 .

#

nain java) Em com) apress) Eu bgn) Bmch3 helloworld € Helloworld » 1 Iiel.‘aWou’ldE o EE
& Helloworld java ¢ Edit Configurations...
g1 package com.apress.bgn.ch3.helloworld; . I Save 'Helloworld' Configuration
Main

» public class helloworld §
re@ public static void main{String[] args) { , HelloWorld
T intln(® . T
System.out.println("Hello " + args[e] + = !~); java-bgn [build]

¥
e ® Run/Debug Configurations
+ -0 HF - ” MName: HelloWorld Share Single instance only
v [Application
Main m Code Coverage Logs
HelloWorld
(= Gradle Main class: com.apress.bgn.ch3.helloworld. HelloWorld
5~ Defaults
VM options:
Program arguments:
Working directory: JUsersfiuliana.grajdeanu/apress/workspace/java-bgn B
Environment variables:
Use classpath of module: I chapter03_main il
JRE: 10 B .
Shorten command line: user-local default: none va [options] classnan rgs] B
Enable capturing form snapshots
~ Before launch: Build, Activate tool window
4% Build
+
Show this page Activate tool window
i
| (2 Cancel roly | I [
|
WMachines/jdk-10 JUR/CONTENTSTHOM/DIN JOVE oe
it code ©

Figure 3-26. Customizing a Run configuration

93

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

In the image, the key elements were circled (well, enclosed in a rectangle actually,
but you get the idea!). As you can see in the run configurations list in Figure 3-26, Intelli]
IDEA saves a few of your previous executions, including the Gradle build task, that you
executed earlier in this chapter. In the left of the Run/Debug Configurations dialog
windows, you can see the Intelli] IDEA run configurations grouped by type. By default,
the last run configuration is opened on the right of the window, in this case it should
be the run configuration for the HelloWor1ld class. There are a lot of options you can
configure for an execution and most of them have been automatically decided by the
IDE. The Program arguments: text field is where your arguments for the main() method
are introduced. In Figure 3-26, I introduced Developer. So, if you click the Apply button
and then the OK button, and then execute the class, instead of Hello World! you should
see now Hello Developer! in the console.

So what else can we do with our class? Remember the code the book started with?
Let’s put it in the main main() method.

package com.apress.bgn.ch3.helloworld;
import java.util.list;
public class HelloWorld {

public static void main(String... args) {
List<String> items = List.of("1", "a", "2", "a", "3", "a");
items.forEach(item -> {
if (item.equals("a")) {
System.out.println("A");
} else {

System.out.println("Not A");

1

The import java.util.List; statement is the only type of statement that can exist
between a package and a class declaration. This statement is telling the Java compiler
that object type java.util.List is used in the program. The import keyword is followed
by the fully qualified name of the data type. A fully qualified name of a data type is
made of the package name(java.util), a dot(.) and the simple name of the class(List).

94

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

Without it, the class will not compile. Try it; just put // in front of the statement, which
turns the line into a comment that is ignored by the compiler. You will see the editor
complaining by making any piece of code related to that list bright red.

The statement List<String> items = List.of("1", "a", "2", "a", "3", "a");
creates a list of text values®"*? that are then traversed, one by one, by the forEach
method, and each of them are tested to see if they are equal to the "a" character.®

If you run the class now, you should see a sequence of A and Not A in the console,

each on its own line.

Not A
A
Not A
A
Not A
A

The code we have written until now uses a few types of objects to print a simple
message in the console. The List object is used to hold a few String objects. The
messages are printed using the println() method, that s called on the out object, that
is a static field in the System class. And these are just the objects that are visible to you in
the code. Under the hood, the List objects are processed by a Consumer object created
on the spot that the lambda expression hides for simplicity.

package com.apress.bgn.ch3.helloworld;

import java.util.list;
[import java.util.function.Consumer;]

public class HelloWorld {
public static void main(String... args) {
List<String> items = List.of("1", "a", "2", "a", "3", "a");
items.forEach(new Consumer<String>() {

@verride

ZCreating lists this way was introduced in Java 9

2Specifying what type of elements are in a list by using <> was introduced in Java 5 and it’s called
generics

#The whole expression used to do this is called a lambda expression. This type of syntax was
introduced in Java 8, together with the forEach method.

95

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

public void accept(String item) {
if (item.equals("a")) {
System.out.println("A");
} else {
System.out.println("Not A");

1

It might look scary now, but I promise that this book introduces each concept in
a clear context and compared with real life objects and events so you can understand
it easily. And if that does not work, there are always more books, more blogs, and the
official Oracle webpage for each JDK, which have good tutorials. Where there’s a will,
there’s a way.

! Also, use your IDE! By clicking any object type in the code while pressing the
Control/Command key, the code of the object class is opened, and you can see
how that class was written and you can read the documentation for it directly in
the editor. As an exercise do this for the forEach method and the System class.

Summary

In this chapter, you did the following tasks:
e Learned how to use JShell
o Learned about Java packages and actually created one
e Learned about Java accessors
o Learned about modules
e Created our first Java project with Intelli] IDEA
e Wrote the code for our first program within Intelli] IDEA

o ...that we later compiled manually too

96

(c) ketabton.com: The Digital Library

CHAPTER 3 GETTING YOUR FEET WET

» Ran our first program (Hello World!)

e Added packages to it

e Configured a module for it

e ...and compiled and executed it manually too

e Learned about Gradle and how it can make a developer’s life easy

Many of the things you did in this chapter, you will probably do daily after getting
ajob as a Java developer—except for the time you'll spend hunting and fixing bugs in
existing code. You will probably spend a lot of time reading documentation too, because
the JDK has a lot of classes, fields, and methods that you can use to write an application.
And with each released version, things change and you must keep yourself up-to-date.
Brains have limited capacity, so no employer should ever expect you to know every JDK
class and method; but work smart and keep the webpage?* at https://docs.oracle.
com/javase/10/docs/api/ open in your browser. And when you have doubts about a
JDK class or method, you can read about it on the spot.

2*Currently, only the JDK 10 is available at https://docs.oracle.com/javase/10/

97

(c) ketabton.com: The Digital Library

CHAPTER 4

Java Syntax

Languages are means of communication—verbal or written—between people. Whether
they are natural or artificial, they are made of terms and have rules on how to use
them to perform the task of communication. Programming languages are means of
communicating with a computer. The communication with a computer is a written
communication; basically, the developer defines some instructions to be executed,
communicates them through an intermediary to the computer, and if the computer
understands them, performs the set of actions, and depending on the application type,
some sort of reply is returned to the developer.

In the Java language, communication is done through an intermediary—the
Java virtual machine. The set of programming rules that define how terms should be
connected to produce an understandable unit of communication is called syntax. Java
borrowed most of its syntax from a programming language called C++, which has a
syntax based on the C language. C syntax borrows elements and rules from languages
that preceded it, but in essence, all of these languages are based on the natural English
language.

Maybe Java got a little cryptic in version 8 because of the introduction of lambda
expressions, but when writing a Java program, if you are naming your terms properly in
the English language, the result should be code that is easily readable, like a story.

A few details were covered in Chapter 3; packages and modules were covered
enough to give you a solid understanding of their purpose to avoid confusion with the
organization of the project and aimless fumbling through the code. But as expected
when it comes to actual code writing, the surface has been barely scratched. Thus, let’s
begin our deep dive into Java.

99

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_4

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Base Rules of Writing Java Code

Before writing Java code, let’s go over a few rules that you should follow to make sure
your code actually works. Let’s depict the class we ended Chapter 3 with by adding a few
details.

01. package com.apress.bgn.ch3.helloworld;

02.

03. import java.util.list;

04.

05. /**

06. * this is a JavaDoc comment

07. */

08. public class HelloWorld {

09. public static void main(String... args) {
10. //this is a one-line comment

11. List<String> items = List.of("1", "a", "2", "a", "3", "a");
12. items.forEach(item -> {

13. /* this is a

14. multi-line

15. comment */

16. if (item.equals("a")) {

17. System.out.println("A");

18. } else {

19. System.out.println("Not A");
20. }

21. 1

22. }

23. }

Next, I'll cover each rule in its own section.

100

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Package Declaration

A Java file always starts with the package declaration. The package name can contain
letters and numbers, separated by dots. Each part matches a directory in the path to

the classes contained in it. The package declaration should reveal the name of the
application and the purpose of the classes in the package. Let’s take the package naming
used for the sources of this book: com.apress.bgn.ch4.basic. If we split the package
name in pieces, the meaning of each piece is described as follows.

o com.apress is the domain of the application, or who owns the
application in this case

o bgnis the scope of the code, in this case the book it is written for (Java
for Absolute Beginners)

e ch4isthe purpose of the classes in Chapter 4

e basicis amore refined level of the purpose for the classes, these
classes are simple, used to depict basic Java notions

Import Section

The import section follows the package declaration. This section contains the fully
qualified names of all classes, interfaces, and enums used within the file. Look at the
following code sample.

package java.lang;

import java.io.Serializable;

import java.io.ObjectStreamField;

import java.io.UnsupportedEncodingException;
import java.lang.annotation.Native;

import java.nio.charset.Charset;

import java.util.Arraylist;

import java.util.Arrays;

import java.util.Comparator;

import java.util.Formatter;

import java.util.locale;

101

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

public final class String
implements Serializable, Comparable<String>, CharSequence {

private static final ObjectStreamField serialPersistentFields =
new ObjectStreamFieldo;

Itis a snippet from the official Java String class. Every import statement makes
reference to the package and the name of a class used within the String class body

Special import statements import static variables and static methods. Static variables
and methods can be used without the need to instantiate a class. In the JDK, there is a
class used for mathematical processes. It contains static variables and methods that can
be used by developers to implement code that solves mathematical problems. Look at
the following code.

package com.apress.bgn.ch4.basic;

import static java.lang.Math.PI;

import static java.lang.Math.sqgrt;

public class Sample extends Object {
public static void main(String... args) {
System.out.println("PI value =" + PI);

double result = sqgrt(5.0);

System.out.println("SQRT value =" + result);

By putting import and static together, we can declare a fully qualified name of a
class and the method or the variable we are interested in using in the code. This allows
us to use the variable or method directly, without the name of the class it is declared in.
Without the static imports, the code has to be rewritten like this:

package com.apress.bgn.ch4.basic;

import java.lang.Math;

public class Sample extends Object {

102

(c) ketabton.com: The Digital Library

CHAPTER 4

public static void main(String... args) {
System.out.println("PI value =" + Math.PI);

double result = Math.sqrt(5.0);

System.out.println("SQRT value =" + result);

JAVA SYNTAX

Another thing that you probably do when writing Java code is to compact import

statements. Compacting imports is recommended when using multiple classes from

the same package to write code, or multiple static variables and methods from the same

class. When doing so, the import section of a file becomes really big and difficult to

read. This is where compacting comes to help. Compacting imports means replacing

all classes from the same package or variables and methods from the same class with a

wildcard so only one import statement is needed. So, the Sample class becomes

package com.apress.bgn.ch4.basic;

import static java.lang.Math.*;

public class Sample extends Object {
public static void main(String... args) {
System.out.println("PI value =" + PI);

double result = sqrt(5.0);

System.out.println("SORT value =" + result);

Java “Grammar”

Java is case sensitive, which means that you can write a piece of code as follows.

public class Sample {

public static void main(String... args) {
int mynumber = 0;
int myNumber = 1;

103

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

int Mynumber = 2;
int MYNUMBER = 3;
System.out.println(mynumber);
System.out.println(myNumber);

System.out.println(Mynumber);
System.out.println(MYNUMBER);

All four variables are different and the last lines print numbers: 0 1 2 3. You cannot
declare two variables sharing the same name, in the same context (e.g., in the body of
a method), because you would be basically redeclaring the same variable and the Java
compiler does not allow this. If you try to do this, your code will not compile, and even
Intelli] IDEA will try to make you see the error of your ways by underlining the code in
red and showing you a relevant message, like in Figure 4-1, where the mynumber variable
is declared twice.

F public class Sample {

2 public static void main{String... args) {

int mynumber

ma
e;
int mynumber = o;

1
Variable 'mynumber’ is already defined in the scope

Figure 4-1. Same statements example with error

There is a set of Java keywords that can be used only for a fixed and predefined
purpose in the Java code. A few of them have already been introduced: import, package,
public, class. The rest of them are covered at the end of the chapter with a short
explanation for each (see Tables 4-2 and 4-3).

104

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Except for import, package, interface (or @interface), enum and class declarations,
everything else in a Java source file must be declared between curly brackets ({ }). These
are called block delimiters. Take a look at the beginning of section 4.1. The brackets are
used there to wrap up the following.

« contents of a class, also called the body of the class (brackets in lines
08 and 23)

» contents of a method, also called the body of a method (brackets in
lines 09 and 22)

o asetofinstructions to be executed together (brackets in lines 12 and 21)

Line terminators: code lines are usually ended in Java by the semicolon (;) symbol or
by the ASCII characters CR, LF, or CRLE Colons are used to terminate fully functioning
statements, like the list declaration in line 11. If we have a really little monitor, and we
are forced to split that statement on two subsequent lines to keep the code readable,
the colon at its end tells the compiler that this statement that is correct only when taken
together. Take a look at Figure 4-2.

package com.apress.bgn.ch4.basic;
iport java.util.List;

» public class Sample {

4 public static void main(String... args) {
List<String> items = List.of("1", "a", "2", "a", "3", "a");
List<String=> -

List.éf(ﬁl;, " Y AT AN, YAt

List<String> badlList =_;
List.of("1", "a", "2", "a", "3", "a");

Figure 4-2. Different statements samples

The declaration of a list in line 8 is equivalent to the one in lines 10 and 11. The
declaration in line 13 and 14 is intentionally written wrong—a colon is added in line
13, which ends the statement there; but that statement is not valid and the compiler
complains about it when you try to compile that class by printing an exception saying:
"Error: (13, 32) java: illegal start of expression”.If the error message does
not seem to fit the example, think about it like this: the problem for the compiler is not

105

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

the wrongful termination of the statement, but that after the = symbol, the compiler
expects to find some sort of expression that produces the value for the badList variable,
but instead it finds nothing.

Java ldentifiers

An identifier is the name you give to an item in Java: a class, variable, method, and

so forth. Identifiers must respect a few rules to allow the code to compile and also
common-sense programming rules, called Java coding conventions. A few of them are
listed below:

¢ an identifier cannot be one of the Java reserved words, or the code
will not compile

o anidentifier cannot be a boolean literal (true, false)orthe null
literal , or the code will not compile

o anidentifier can be made of letters, numbers and any of , $

o developers should declare their identifiers following the Camel case
writing style, the practice of writing compound words or phrases such
that each word or abbreviation in the middle of the phrase begins
with a capital letter, with no intervening spaces or punctuation,
making sure each word or abbreviation in the middle of the identifier
name begins with a capital letter (e.g., StringBuilder, isAdult)

A variable is a set of characters that can be associated with a value. It has a type. The
set of values that can be assigned to it are restricted to a certain interval group of values
or must follow a certain form defined by that type. For example, items declared in line 11
is a variable of type List.

In Java, there are three types of variables.

o fields are variables defined in class bodies, outside of method bodies
and that do not have the keyword static in front of them

o local variables are variables declared inside method bodies, they are
relevant only in that context

o static variables are variables declared inside class bodies with the
have the keyword static in front of them. If they are declared as
public they are accessible globally.

106

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Java Comments

Java comments refer to pieces of explanatory text that are not part of the code executed
and are ignored by the compiler. There are three ways to add comments within the code
in Java, depending on the characters used to declare them.

o //isused for single line comments (line 10)

e /** .. */Javadoc comments, special comments that are exported
using special tools into the documentation of a project called Javadoc
API (lines 05 to 07)

e /* ... */used for multiline comments (lines 13 to 15)

Java Object Types

When introducing the Java building blocks in Chapter 3, only class was mentioned

to keep things simple. It was mentioned that there are other object types in Java. The

expression object type is not really accurate and in this section, things become clearer.
Classes are templates for creating objects. Creating an object based on a class

is called instantiation and the resulted object is referred to as an instance of that

class. Instances are called objects because by default any class written by a developer

implicitly extends class java.lang.0bject if no other superclass is declared. So, the

following class declaration

package com.apress.bgn.ch4.basic;

public class Sample {

}

is equivalent to

package com.apress.bgn.ch4.basic;

public class Sample extends Object {

}

Also, notice how importing the java.lang package is not necessary, because the
Object class is the root class of the Java hierarchy, all classes (including arrays) must
have access to extend it. And thus, the java.lang package is implicitly imported as well.

107

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

But aside from classes, there are other template types that can be used for creating
objects in Java. The following sections introduce them and explain what they are used
for. But let’s do so in context.

Let’s create a family of templates for defining humans. Most Java tutorials use
templates for vehicles or geometrical shapes. I want to model something that anybody
can easily understand and relate to. The purpose of the following sections is to develop
Java templates that model different types of people. The only Java template that I've
explained so far is the class, so let’s continue with that.

Classes

The operation through which instances are created is called instantiation. So, to

design a class that models a generic human, we should think about two things: human
characteristics and human actions. So, what do all humans have in common? Well, a lot,
but for the purpose of this section, let’s choose three generic attributes: a name, age, and
height. These attributes map in a Java class to variables called fields or properties.

Fields

So, our class looks like this (initially):
package com.apress.bgn.ch4.basic;

public class Human {
String name;

int age;

float height;

In the code sample, the fields have different types, depending on which values
should be associated with them. For example, name can be associated with a text value,
like "John", and text is represented in Java by the String type. The age can be associated
with numeric integer values, so is of type int. And for the purpose of this section, we've
considered that the height of a person is a rational number like 1.9, so we used the
special Java type for this kind of value: float.

108

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

So, now we have a class modelling some basic attributes of a human. How do we
use it? We need a main() method and we need to instantiate the class. In the next code
snippet, a human named John is created.

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human human = new Human();
human.name = "John";

human.age = 40;
human.height = 1.91f;

To create a Human instance, we use the new keyword. Next, we call a special method
called a constructor. I've covered methods before, but this one is special. (Some
programmers do not even consider it a method.) The most obvious reason for that is
it wasn’t defined anywhere in the body of the Human class. So, where is it coming from?
Well, it’s a default constructor that is automatically generated by the compiler unless an
explicit one is declared. A class cannot exist without a constructor; otherwise, it cannot
be instantiated. That is why the compiler generates one if none was explicitly declared.
The default constructor, calls super () that invokes the Object no argument constructor
that initializes all fields with default values. This can be tested by the following example.

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human human = new Human();
System.out.println("name: "
System.out.println("age:

System.out.println("height:

+ human.name);

+ human.age);

+ human.height);

109

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

What do you think will happen when you run the previous code? If you think that
some default values (neutral) printed, you are absolutely right. The following is the
output of the previous code.

name: null
age: 0
height: 0.0

The numeric variables were initialized with 0, and the String value was initialized
with null. The reason for that is that the numeric types are primitive data types and
String is an object data type. The String class is part of the java.lang package, which is
one of the predefined Java classes that creates objects of type String. Itis a special data
type that represents text objects. We'll go deeper into data types in the following chapter.

Class Variables

Aside attributes that are specific to each human in particular, all humans have
something in common: a lifespan, which is assumed to be 100 years. It would be
redundant to declare a field called lifespan, because it has to be associated with the same
value for all human instances. So, we declare a field using the static keyword in the
Human class, which has the same value for all Human instances and that is initialized only
once. And we can go one step further and make sure that value never changes during the
execution of the program by adding the final modifier in front of its declaration as well.
This way we created a special type of variable called a constant. The new Human class
looks like this:

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

String name;
int age;

float height;

110

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

The LIFESPAN variable is also called a class variable, because it is not associated
with instances but with the class. This is clear in the following example.

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human john = new Human();
john.name = "John";

Human jane = new Human();
jane.name = "Jane";

System.out.println("John’s lifespan = " + john.LIFESPAN);

System.out.println("Jane’s lifespan = " + jane.LIFESPAN);

System.out.println("Human lifespan = " + Human.LIFESPAN);

When the main() method of the preceding class is executed, the following is printed,
which proves everything that was mentioned before.

100
100
Human lifespan = 100

John's lifespan
Jane's lifespan

Encapsulating Data

The class we defined makes no use of access modifiers on the fields, which is not
acceptable. Java is known as an object-oriented programming language (OOP), and
thus, code written in Java must respect the principles of OOP. Respecting these coding
principles ensures that the written code is of good quality and totally aligns with the
fundamental Java style. One of the OOP principles is encapsulation. The encapsulation
principle refers to hiding of data implementation by restricting access to it using special
methods called accessors (getters) and mutators (setters).

111

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Basically, any field of a class should have private access, and access to it should be
controlled by methods that can be intercepted, tested, and tracked to see where they were
called. Getters and setters are a normal practice to have when working so objects that most
IDEs have a default options to generate them, including Intelli] IDEA. Right-click inside
the class body and select the Generate option to see all possibilities and select Getters and
Setters to generate the methods for you. The menu is depicted in Figure 4-3.

After making the fields private, and generating the getters and setter the Human class
now looks like this:

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

public float getHeight() {
return height;

112

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

public void setHeight(float height) {
this.height = height;

1]
W

€ Human.java €' BasicHumanDemo.java (=] Main.java €' sample.java -

package com.apress.bgn.chd.basic;

ajpess (o

f o
| 4 % @author iuliana.cosmina

* @date 11/04/2018 m
* @since 1.0 g
*/ g
public cla Copy Reference X¢%c o
static S,
g Paste ®V 3
String Paste from History... 38V
¢ Paste Simple X{8Y
int ag .
Column Selection Mode {388 Cenerate
float Constructor
>y Refactor > Gettar
Folding - Setter
Getter and Setter
Analyze B

equals() and hashCode()
toString()

Override Methods... ~0O
Delegate Methods...
Recompile 'Human.java' O 8F9 Copyright

Go To

Figure 4-3. Intelli] IDEA code generation menu. Generate... » Getter and Setter
submenu

So, you may be wondering what this is. As the word says, it is a reference to the
current object. So, this.name is the value of the field name of the current object. Inside
the class body, this accesses fields for the current object, when there are parameters
in methods that have the same name. And as you can see, the setters and getters that
Intelli] IDEA generates have parameters that are named the same as the fields.

Getters are the simplest methods declared without any parameter. They return the
value of the field they are associated with. Their naming convention uses the get prefix
and the name of the field they access, with the first letter uppercased.

113

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Setters are methods that return nothing. They declare as a parameter a variable with
the same type that needs to be associated to the field. Their names are made of the set
prefix and the name of the field they access, with its first letter uppercased. Figure 4-4
depicts the setter and getter for the name field.

8 public class Human {
9 static final int LIFESPAN = 100;
10

11 private String Géme-;>

12

13 private int age;

14

15 private float height;

16

17 public String ge Na@gx) {
18 return name;

19 }

20 -

21 public void se‘@an@(String name) {
22 this.name = name;

23 }

24

Figure 4-4. Setter and getter methods used for the name field

This means that when instantiating the Human class, we have to use the setters
to set the field values and the getters to access those values. Thus, our class
BasicHumanDemo becomes

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human human = new Human();
human.setName("John");
human.setAge(40);
human.setHeight(1.91f);

System.out.println("name: " + human.getName());
System.out.println("age: " + human.getAge());

System.out.println("height: " + human.getHeight());

114

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Methods

Since getters and setters are methods it is time to start the discussions about methods too.
A method is a block of code characterized by returned type, name, and parameters that
describes an action done by or on the object that makes use of the values of its fields and/
or arguments provided. An abstract template of a Java method is depicted as follows.

[accessor] [returned type] [name] typel parami, type2 param2, ... {
// code
[[maybe] return val]

}

Let’s create a method for the Human class that computes and prints how much time a
human still has to live by making use of his age and the LIFESPAN constant. Because the
method does not return anything, the return type used is void, a special type that tells
the compiler that the method does not return anything and we have no return statement
in the method body.

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

private String name;

private int age;

private float height;

/**

* compute and prints time to live

*/

public void computeAndPrintTtl(){
int ttl = LIFESPAN - this.age;
System.out.println("Time to live: " + ttl);

115

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

I There is a Java coding convention in the naming of constants that recommends
using only uppercase letters, underscores, and numbers.

The preceding method definition does not declare any parameters, so considering
we have a Human instance we can call the method like this:

Human human = new Human();
human.setName("John");
human.setAge(40);
human.setHeight(1.91f);
human.computeAndPrintTtl();

And we expect it to print Time to live: 60, which actually happened. Now, let’s
modify the method to return the value instead of printing it.

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

private String name;

private int age;

private float height;

Vioio

* @return time to live

*/

public int getTimeTolLive(){
int ttl = LIFESPAN - this.age;
return ttl;

116

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

Calling the method do nothing in this case, we have to modify the code to save the
returned value and print it.

Human human = new Human();
human.setName("John");
human.setAge(40);
human.setHeight(1.91f);

int timeTolLive = getTimeTolLive();
System.out.println("Time to live:

+ timeTolLive);

Both methods introduced here declare no parameters, so they are called without
providing any arguments. We won’t cover methods with parameters, as the setters are
more than obvious. Let’s skip ahead.

Constructors

Now we’ve done it. We can no longer use human.name without the compiler complaining
about it. But still, it is annoying to call all of those setters to set the properties; something
should be done about that. Remember the implicit constructor? Well, let’s create an
explicit one that has parameters for each of the fields we are interested in.

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public Human(String name, int age, float height) {
this.name = name;
this.age = age;
this.height = height;

117

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

In the preceding example, you can see that the constructor does not include
a return statement, even if the result of calling a constructor is the creation of an
object. Constructors are different from methods in that way. By declaring an explicit
constructor, the default constructor is no longer generated. So, creating a Human instance
by calling the default constructor does not work anymore; the code no longer compiles
because the default constructor is no longer generated.

Human human = new Human();

To create a Human instance, we now have to call the new constructor and provide
proper arguments in place of the parameters, having the same types as declared.

Human human = new Human("John", 40, 1.91f);

But what if we do not want to be forced to set all fields using this constructor? It’s
simple, we define another with only the parameters that we are interested in. Let’s define
a constructor that only sets the name and the age for a Human instance.

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public Human(String name, int age) {
this.name = name;
this.age = age;

}

public Human(String name, int age, float height) {
this.name = name;
this.age = age;
this.height = height;

118

(c) ketabton.com: The Digital Library

CHAPTER 4 JAVA SYNTAX

And this is where we stumble upon an OOP principle called polymorphism. The
term is Greek and translates to one name, many forms. Polymorphism manifests itself
by having multipl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>