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Preface

This book is the result of experience in teaching, research and extension activities developed
by the authors over their 20-year professional careers. With the multidisciplinary association of
areas such as geomatics, electronics and robotics, science paradigms can be better understood,
such as the extension of the space universe in which we live and the origin of life on Earth.
The science, art and technology of surveying has advanced rapidly with the need to obtain maps
with locations of borders, realization of practices and constructions in rural areas, urban areas,
preservation of natural resources and knowledge about ecological aspects of the inhabitants of the
planet Earth. Scientific principles are used to encompass a broad range of more specialized fields
of geomatic engineering, each with a more specific emphasis on particular areas of land survey-
ing, photogrammetry, remote sensing, cartography, geographic information systems and science.
The traditional instruments used in the 1960s and 1970s, such as theodolites, surveyor levels
and surveying chains, have been complemented by a set of new high-tech instruments. Currently,
depending on the quality of the topographic survey, measuring the environment with geomat-
ics requires the use of electronic instruments, such as electronic total station, global navigation
satellite systems (GNSS), cell phones connected to geographic information systems and with geo-
graphic applications, 3D mobile mapping systems, laser scanners, digital cameras, remote sensors
and digital printers. The scope of the chapters covered was chosen for applications in agricultural
engineering science problems using computer programming routines, through the R software and
R packages. Exercises are solved at the end of each chapter to help understand the theories de-
veloped in the 14 chapters. This is the first book ever with a theoretical and practical approach
on the use of geomatics with science and R software. As a study guide, slides and illustrative
videos are presented about the subject covered in each chapter. The development of scientific
research on geomatics is stimulated through activity proposals that can be used or adapted by
the student to assess the applicability of the subject matter covered in each chapter. Learning
outcome assessment strategies are also included in order to expand the possibilities of solving
geomatics problems with R and science by students, teachers, researchers and users of geomatics.

Surveying with Geomatics and R fills a gap in the literature presenting basic concepts and practical
material on surveying with geomatics using R and R packages. Thereby, we hope to engage
students in the learning process of surveying with real field examples and different degrees of
complexity along the book development and improved results based on existing literature. We
explore surveying problems based on field observations and geospatial advanced technology. Thus,
the book can be applied in geocomputation, remote sensing, geography and cartography courses
focusing on surveying tasks. We include a wide range of case studies as motivational self-paced
tutorials. Computer programming routines are detailed and linked with theories and applications
of each chapter. The academic and professional community can use a free software to develop
complex surveying problems. Certainly, after this book, a new way of teaching surveying courses
will arise with didactic motivating examples and development possibilities of R free software
user-defined functions.

With the advancement of surveying science and techniques, there was a need to create a broader
term to encompass methods of mathematical modeling, georeferencing, cartographic representa-
tion, geocomputation and electronics applied to surveying tasks, giving rise to the term “geo-
matics”. With this, there was a need to produce a book using theoretical and practical surveying
fundamentals associated with geospatial information, R software and R packages. The approach of

ix



X Preface

covering surveying topics associated with scientific projects and examples of manuscript prepara-
tion in the surveying area give this work unprecedented prominence. The mathematical modeling,
geocomputation, mapping and image processing techniques used in examples in the book expand
the application potential of this work for use in a wider range of didactic courses in which ge-
omatics can be applied. We also present relevant topics updated with scientific references and
technological description of instruments and methods for surveying the Earth’s environment. All
chapters are structured with learning questions, learning outcomes, computation, solved exer-
cises, homework, resources on the Internet, research suggestion, and learning outcome assessment
strategies in order to expand the scientific capability of each topic covered on the use of surveying
with geomatics and R.

The basic idea of the book is to advance slowly in surveying topics, with increasing order of
complexity from the first to the last chapter. The book covers 14 chapters about surveying ap-
plications with geomatics and R. Some techniques presented at the beginning of the book, with
direct measurements of distance and stadia may be considered obsolete; however, they are impor-
tant for understanding surveying in practice and can be used to create sophisticated technological
instruments using the same basic principle. In Chapter 1, scientific applications of surveying are
introduced. In Chapter 2, we present introduction to geomatics and measurement units. In Chap-
ter 3, theory on measurement errors is presented. Chapter 4 elucidates questions about angle
and direction observations in geomatics and R. Chapter 5 presentes direct distance and angle
measurements as a practical and low-cost measurement option. In Chapter 6, information on sta-
dia indirect measurements with mechanical optical instruments, theodolites and optical levels is
covered. In Chapter 7, aspects involved with electronic distance and level measurements are pre-
sented. In Chapter 8, radial traverse survey examples and calculations are addressed. In Chapter 9,
closed-path traverse surveying is detailed with traversing adjustment examples and calculations.
In Chapter 10, questions are raised about intersection surveying for determining coordinates of
points in inaccessible locations. In Chapter 11, a practical way to elaborate a surveying descrip-
tive memorial, with inverse, area and perimeter calculation of closed-path polygon surveying is
addressed. In Chapter 12, we present coordinate reference systems for geodetic surveying with
geomatics and R. In Chapter 13, cartographic coordinate projection systems are evaluated in
theory and practice with geomatics and R. Finally, in Chapter 14, we address questions on how
global navigation satellite systems have been used for dynamic surveying, speed calculation and

mapping.

The practical examples solved cover the topographic survey with field data measurements and
different survey equipments. We started the book exploring basic geographic data and tools with
increasing evolving techniques and complexity of analyses until the end of the book. The number
of used packages and calculation complexity increased along the book with applied geographical
examples. At the end of the book, we present how to use international reference for geographic
information representation and reprodution worldwide. In each chapter we show study cases
with computation practices related to the chapter subject in geomatics. The book is innovative,
presenting a large number of surveying example applications with field equipment and R packages,
exploring scientific possibilities of using geomatics for hypothesis test answers.

Marcelo de Carvalho Alves and Luciana Sanches, Lavras, June 2021
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Scientific Applications of Surveying

1.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o How to perform science with geomatics.

o What the relationship is between applications of geomatics to scientific practice.
How to solve geographic problems objectively.

e How to carry out scientific research planning in geomatics.

1.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

o Understand the use of geomatics in everyday life.

o Appreciate the variety and diversity of applications of geomatics as a science.

o Identify hypotheses in scientific studies of geographic problems.

e Check an example of writing a scientific project and article manuscript in geomatics with R.
o Check an example of scientific dissemination of geomatics with R.

1.3 Introduction

Geospatial data and analysis have become so commonplace that society often takes them for
granted. For example, most people are not concerned about how the fastest route to a local is
determined when an Internet mapping site (Bing Maps, Google Maps, Yahoo! Maps) or personal
cell phone navigation device is used. The only concern is with the correct functioning of the device.
Therefore, it became essential to worry about improving the scientific applications of geomatics in
order to have the highest possible accuracy and efficiency in the decision making process (Jensen
and Jensen, 2012).

Geomatics has been used in everyday activities of working and living on Earth. With this, the
following everyday uses of geomatics are highlighted (Longley et al., 2001):

o Efficiency in decision making;
o Application in various areas related to socioeconomics and environment;

DOLI: 10.1201/9781003184263-1 1



2 1 Scientific Applications of Surveying

o Use in mapping, measuring, managing, monitoring and modeling operations;
e Measurable economic benefits;
o Combinations with other technologies.

The factors that determined the everyday use of geomatics in modern society are (Longley et al.,
2001):

o Increased availability of geographic information systems on the Internet and local enterprise
networks;

o Relative price reductions of geomatics hardware and software;

o Increased awareness of the population to include geographic dimension in decision making;

o Possibility of user interaction with windowed environments;

o Technology supporting applications to visualize, manage and analyze data, as well as linking
to other software;

o Availability of satellite positioning system;

o Availability of user-friendly applications;

e Accumulated experience in using geomatics applications.

1.4 Context of Information in Geomatics

The geospatial information used occurs in a context consisting of the set of knowledge acquired
in scientific research and geospatial applications, technologies applied to develop and manage
computer systems and the institutions created to facilitate the acquisition and development of
geospatial information. The context of geospatial information affected different sectors of the
economy (Figure 1.1) (Lo and Yeung, 2007).

The main sources of geospatial information production are (Burrough and McDonnell, 1998):

o Topographic mapping;

o Property registration and cadastre;

e Hydrographic mapping;

o Military organizations;

o Remote sensing and satellite agencies and companies;

e Survey of natural resources, such as geology, hydrology, soil, ecology, biogeography, meteo-
rology, climatology, and oceonography.

The main types of geographic data available are (Burrough and McDonnell, 1998):

o Topographic maps at different scales;

o Imagery at different data collection altitudes and resolutions;

o Administrative boundaries, census data, zip code, statistics, people, land cover and land use
at different resolutions;

o Marketing survey data;

o Utility data, such as gas, water, sewage, power lines, and Internet network and their location;

o Data on rocks, water, soil, atmosphere, biological activity, natural disasters, and other types.

The main applications of geographic data are (Burrough and McDonnell, 1998; Neves et al., 1998;
Silva and Assad, 1998):
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FIGURE 1.1: Geospatial information context.

o Agricultural sciences, for monitoring, management, description and scenario building;

e Archaeology, for description and study of the past;

e Environmental monitoring and management;

e Health and epidemiology, for locating diseases in relation to the environment;

e Emergency services, for optimizing routes for ambulance, police, fire escape, investigation and
location of crimes;

o Navigation, for air, sea, and land;

e Marketing, for locating places and target groups, delivery optimization;

e Regional and local cost planning, maintenance, and site management;

o Planning and management of highways, railroads, and airways;

e Property and inventory evaluation, calculation of cut, fill, and volume of materials;

« Social studies to analyze population movement, local and regional development;

o Tourism, for locating and managing attractions and facilities;

o Everyday utilities for locating, managing, and planning water, drainage, gas, electricity, tele-
phone, and cabling services.

With the need to improve the quality of products, services, and processes, geomatics has been
used at different structural levels of government organizations in the following applications (Figure
1.2) (Longley et al., 2001):

e Inventory resources and infrastructure, planning transportation routing, improving public
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service delivery, managing land development, and generating revenue by increased economic
activity;

o Use of geomatics in long-term geographic problems with health, safety and welfare of citizens,
incorporating public values in decision making, providing services in a fair and equitable
manner, and representing citizens’ opinions by democratic work;

o Applications of geomatics in public health risk monitoring, housing stock management, social
welfare fund allocation, crime tracking, geodemography analysis, operational, tactical and
strategic decision making in enforcement, health planning and education management;

e Asset inventory, policy analysis, modeling and strategic planning.

Unitied control

Federal
Government

Policy,
Auditing, Regional

Government
Legislation Tocal
Government
v / Community \

FIGURE 1.2: Use of geomatics at different structural levels of governmental decision making.

1.5 Scientific Applications of Geomatics

In the development of scientific applications of geomatics, some fundamental concepts are pre-
sented in order to clarify any conceptual doubts about science, scientist, research, experiment,
and hypothesis (Table 1.1).

In the deductive scientific method, a chain of descending reasoning of analysis from the general to
the particular is used to reach a conclusion. In the inductive scientific method, inferences about
a general or universal truth not contained in the observations are made from particular observed
data.

In basic research, useful knowledge is generated for the advancement of science with no foreseen
practical application. In applied research, the generation of knowledge for practical application is
directed to the solution of specific problems.

Since in science the goal of knowing and solving geographic problems varied according to the
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complexity of available scientific principles and techniques, some project goals used in geomatics
are (Longley et al., 2001):

o Rational, effective and efficient allocation of resources according to criteria;

e Monitoring and understanding the geospatial context;

o Understanding regional differences of an object or process;

o Understanding processes in natural and anthropic environments;

o Prescribing strategies for environmental maintenance, air quality, soil and water conservation.

Applications of geomatics should be based on sound concepts and theory to solve different types
of geographic problems (Longley et al., 2001).

1.6 Elaboration of Scientific Projects in Geomatics

In the process of developing topography applications, the following phases are addressed to obtain
the knowledge needed to make decisions using geomatics:

o Hypothesis testing;

o Data collection in situ;

o Geospatial infrastructure data collection;

e Definition of systematic methodology to evaluate and interpret the results obtained (Figure
1.3).

The full content of known digital libraries can be used to perform keyword searches for geomatics
related subjects of interest (Arvanitou et al., 2021):

o Web of Science';
o ScienceDirect?;
« IEEExplore?;

e Scopus’;

o Google Scholar®.

In the preparation of the scientific project in the area of geomatics some terms can be written
with the verb form in the future tense, because the text is prepared in the context of presenting
a proposition to study and generate relevant scientific conclusions about a particular geographic
problem. In the elaboration of the research project, fundamental concepts are important in scien-
tific surveying applications used in the elaboration of a scientific research proposal with geomatics
and R (Table 1.2).

1https://www.periodicos.capes.gov.br/?option:comfpcollection&mn:YO&smn:m&cid:Sl
2https://www.sc‘ienced'irect.com/

3https://ieeexplore.ieee.org/Xplore/home.jsp

4https://dl.acm.org/

5https://www.scopus.com/home.uri

6https://scholar.google.com/
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FIGURE 1.3: Stages of decision making in application science with geomatics.

TABLE 1.1: Fundamental concepts used in scientific surveying applications.

Term Meaning
Science Knowing and solving geographical problems
Scientist Individual who generates knowledge
Research Set of activities oriented toward the search for knowledge
Experiment Planned activity designed to obtain new facts, confirm the results of
previous experiments, or generate or validate technologies
Hypothesis Testable proposition in the experiment involved in solving problems

Methodology Use of experimental procedures
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1.7 Implementation of Scientific Projects in Geomatics

In the implementation cycle of scientific projects in geomatics and R, the development occurred
as a continuous and recursive process in which modifications and improvements can be made
according to necessary adaptations in the face of new scientific and technological advances that
exist. The model is divided into different working phases of the development process involving:
planning, analysis, design, implementation and support (Figure 1.4) (Lo and Yeung, 2007).

fia A

7

FIGURE 1.4: Pyramid model of the project implementation cycle in geomatics.

Complete

\

The implementation of a geomatics project with R can encompass different project management
and support activities, such as (Lo and Yeung, 2007):

e Planning, localization and control;

e Formal review of business cases and project proposals;

o Availability of studies by simulation or prototypes;

e Data and software quality control;

o Software evaluation and establishment of standards;

e Software acquisition, installation and version control;

e Preparation and production of technical documents and user guides;

o Risk analysis with contingency plan to recover data and system failure.
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1.8 Scientific Dissemination in Geomatics

In scientific dissemination, considerations of scientific writing in the form of a scientific article
and scientific presentation in the format of a slide show are presented.

TABLE 1.2: Description of topics used in the development of scientific projects in geomatics.

Topic Description
Title Should be succinct and contain in a few words what the project is
intended to accomplish
Autor Project proponent, usually the project coordinator. Provides information
on the call for proposals to which the project will be submitted
Abstract and Include index words in the abstract that are not inserted in the title
Keywords

Introduction Describes the issue directly, pointing out the problem and the generating

demand. Mentions the diagnosis of the problem and how you will solve
it. Obtain information about previous studies on similar issues

Hypothesis Should be written in an affirmative way in order to elucidate the tested
proposition of the project
Objectives Should be written in a way that leaves no doubt as to what is intended
to be achieved in the project
Literature review Recent scientific articles published in high impact journals on the
researched subject
Methods Present methodology and information that will be used in the project
Expected results Present the expected results based on data analysis
Execution Time schedule in which the project will be carried out
schedule
Technology Teaching, research and extension activities associated with the project
diffusion
Members Researchers’ team, with information about branches, institution and how
they contributed to the project
References Include the bibliographical references used

1.8.1 Scientific writing

Scientific writing, although an indispensable step in the scientific process, has often been over-
looked in some undergraduate courses in favor of maximizing class time devoted to scientific
concepts. However, the ability to effectively communicate research results is crucial to success in
science. Students and professional scientists are judged by the amount of papers published and
the number of citations those papers received. Therefore, a solid foundation in scientific writing
can better prepare undergraduate and graduate students for productive academic careers (Turbek
et al., 2016).

When writing a scientific paper, the structure of the manuscript should be similar to that of an
hourglass, with an open and broad beginning, tapering off as it narrows down to the relevant
literature that determines the relevance of the paper as unpublished, definition of the hypothesis,
material and methods used. The knowledge gap that will be evaluated should be clear by this
point. In the results phase, corresponding to the middle of the hourglass, the objectives are
achieved through of geomatics and statistical techniques used to evaluate the acceptance of the
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hypothesis. In the discussion phase of the results obtained, the hourglass is again extended to
interpret the results based on the existing literature, in order to make it clear that the knowledge
gap previously detected is filled, culminating in conclusions and implication of the work (Figure
1.5).

g ™

Start Introduction

Knowledge /' Methods
Gap

Results

Action

Discussion

Resolution Conclusion

. iy

FIGURE 1.5: Structure of a scientific paper compared to the outflow of an hourglass.

Therefore, in the Introduction one should start from broad ideas to specific questions, using a
structure that resembles the image of a funnel or an inverted pyramid. The operation of the
Discussion and Introduction sections are opposite and mirrored. In the Discussion, the pyra-
mid presents the conventional format, starting from specific questions (study findings) to more
comprehensive elaborations (Figure 1.6) (Caceres et al., 2011).

The immutable characteristics of good scientific writing distinct among other literature are (Lind-
say, 2011):

e Accuracy;
e Clarity;
o DBrevity.

A vague text cannot be considered a scientific text because of its lack of clarity or ambiguity. A
prolix and unnecessarily discursive scientific manuscript is considered poor in terms of scientific
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writing. Therefore, a clear, precise and brief text can be read and understood by a larger number
of readers (Lindsay, 2011).

In the preparation of the scientific article in the area of geomatics, the topics should be written
with the verb form in the past tense, because the text was prepared in the context of presenting
the results of a work in which relevant scientific conclusions are generated about a particular
geographic problem.

s ™y

Introduction / /A\

/ /

; ; / Discussion

\ J

FIGURE 1.6: Mirrored structure of the Introduction and Discussion sections.

1.8.2 Scientific dissemination

Formal scientific dissemination has been disseminated through presentations in different types of
media. The use of short video presentations has been a form of presentation used by researchers
and in scientific journals and books. However, transforming a scientific publication into a short
video with accessible language can be a complex mission for researchers with little affinity and
availability of these resources.

Dissemination of science means allowing other people to learn about the research conducted.
Scientists working in academia (universities, research centers) and in research and development
in large corporations and small companies need to disseminate research results to gain respect
and credibility in society and boost careers. This can create a market for products and attract
talented employees, as well as build a network of collaborations with other research groups. This
can increase the chances of obtaining funding for projects and research with public and private
investors (CAPES, 2020).

Scientists should inform contributors and investors about accountability and if possible the pos-
itive impact of research on health and socio-economic progress of society. An effective commu-
nication strategy can increase the likelihood that it will attract the attention of decision makers
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and that science will be used to support decisions about strategic evidence-based policy priorities
to meet the needs of the population (CAPES, 2020).

Researchers can disseminate scientific work through articles, review papers, workshops, posters,
talks at conferences and seminars and in reports. In addition, written and visual materials (video
and infographics) can be used for flyers, brochures, press releases, websites, newsletters, blogs,
and the entire broad spectrum of social media (CAPES, 2020).

In preparing the presentation of the scientific article through slides, the following aspects on each
topic proposed in the disclosure of the research are considered (Table 1.3).

TABLE 1.3: Aspects considered in developing presentation topics for scientific papers in geo-
matics with slides.

Topic Aspect Considered
Title Should be brief and contain in a few words what is accomplished with the
work
Authors Include authors, advisors and affiliation according to the norms. Authors’

names should appear on the front cover, below the title
Introduction Should be straight to the point, pointing out the problem and the demand
that generated it. Mentions the diagnosis of the problem and how it was
solved. Gets information about previous studies on similar issues. The text
should be presented in a summarized form in topics that facilitate the
sequence of ideas

Objectives Should be written in a way that leaves no doubt as to what the work
intended to achieve
Methods Materials and methods should be presented in detail, but without
exaggeration, as variable studied, metadata information, analysis
Results Should present the results obtained based on data analysis. Images, graphs,
tables should be legible
Discussion Should discuss the results obtained based on the available literature
Conclusion Should be addressed with the execution of the work within what was
proposed in the objective
References Include the references used

1.8.3 Predatory journals

With the current technological development, one can publish a book or scientific article on a
website with all the necessary features to simulate the image and procedures of a major publisher.
In predatory journals, classified as open access, the scientific quality of the publications is highly
questionable. In these journals, peer review of low quality academic manuscripts is requested
from the authors. The amount of articles in these journals that are actually read, cited, or had
any significant research impact in the same area of knowledge is low. Citation statistics over a
five-year period in Google Scholar for 250 random articles published in predatory journals in 2014
averaged 2.6 citations per article, with 56% of the articles having no citations at all. Based on a
comparative random sample of articles published in approximately 25000 peer-reviewed journals
included in the Scopus index, an average of 18.1 article citations was observed over the same
period, with only 9% of articles having no citations at all. Therefore, we concluded that articles
published in predatory journals presented little scientific impact (Bjork et al., 2020).

With the subversion of the scientific publication process, not validated by peers, the basic foun-
dation of communication in science can be discredited, ultimately turning it into mere opinion
pieces disguised as scientific articles, without any validation of the published content. Therefore,
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the choice of the journal in which to publish a paper can be a challenge full of pitfalls for the less
and more experienced authors, and it is important to evaluate if some knowledge about the cred-
ibility of the journal and the publisher has been made available, besides exercising the authors’
critical sense in choosing a journal with credibility (Penedo and Borges, 2017).

1.9 Computation

As a computation practice, a scientific project is carried out with the goal of mapping the COVID-
19 pandemic in South America in the year 2020 and making a scientific summary about the project
and the manuscript paper. The COVID-19 data are obtained from online national-level govern-
ment sources using the R package, covibio. The R package rnaturalearth is used to obtain the
country database. Other topography functions are performed with the Rrnaturalearth packages,
sf, dplyr, tidyr, rgdal, tmap and ggplot2.

1.9.1 Preparation of the project abstract

The title, abstract and keywords of the project are prepared as follows:
Geospatial and Temporal Progress of COVID-19 in South America in 2020

Marcelo de Carvalho Alves - Federal University of Lavras, Agricultural Engineering Department,
email: marcelo.alves@Qu fla.br

Luciana Sanches - Federal University of Mato Grosso, Department of Sanitary and Environmental
Engineering, email: [sanches@hotmail.com

Abstract

With the advent of the new SARS-CoV-2 coronavirus, causing COVID-19, there have been un-
precedented socioeconomic changes on a global scale. On March 11, 2020, with more than 100,000
cases of COVID-19 on Earth, the World Health Organization (WHO) declared a pandemic sce-
nario. We aimed to evaluate a topographic analysis methodology to assess the progress of the
COVID-19 pandemic in 13 South American countries. We hypothesized that through graphs of
temporal variation of the disease and quantile choropleth maps, it is possible to comparatively
evaluate the progress of the disease in South American countries. Data on the incidence of COVID-
19 in the South American population will be obtained from the R package covipio referring to
government sources at the national level until 12/31/2020. Time-varying curves will be performed
on deaths, confirmed cases, recovery cases and performed tests of COVID-19 in South American
countries.

Keywords: confirmation, deaths, epidemiology, geomatics, recovery, testing.

1.9.2 Elaboration of the scientific article

Abstract

With the advent of the new SARS-CoV-2 coronavirus, causing COVID-19, there have been un-
precedented socioeconomic changes on a global scale. On March 11, 2020, with more than 100,000
cases of COVID-19 on Earth, the World Health Organization (WHO) declared a pandemic sce-
nario. We aimed to evaluate a geomatics analysis methodology to assess the progress of the
COVID-19 pandemic in 13 South American countries. Data on the incidence of COVID-19 in
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the South American population were obtained by the R package covibi9 referring to government
sources at the national level until 12/31/2020. Time variation curves were performed on deaths,
confirmed cases, recovery cases, and tests performed of COVID-19 in South American countries.
Disease time-variation plots and choropleth quantile maps enabled to comparatively evaluate
the progress of the disease in South American countries in the periods 4/19/2020, 7/28/2020,
9/16/2020 and 11/4/2020. COVID-19 temporal variation plots and quantile choropleth maps
enabled comparatively assessing disease spatial progress in South American countries.

An abridged version of the topics required in a scientific paper with the codes used in the com-
putation practice are briefly presented below.

1.9.3 Introduction

The SARS-CoV-2 coronavirus, causing COVID-19 disease, has generated unprecedented socioe-
conomic disruption on a global scale. On March 11, 2020, the World Health Organization (WHO)
declared the progress of the disease as pandemic. An increasing number of patients required in-
tensive care unit (ICU) beds, and the rate of spread of the disease may peak with demand on
ICU bed capacity in many countries (Sun et al., 2020; Gonzédlez-Bustamante, 2021).

The first cases of COVID-19 in South American countries occurred between late February and
early March. The Argentine president, Alberto Fernandez, considered the pandemic a severe threat
to his country (Gonzdlez-Bustamante, 2021). Starting in the third week of March, a large number
of South American countries implemented a series of measures to prevent the pandemic. In some
countries, such as Uruguay and Paraguay, the pandemic progress was low, while others, such as
Brazil and Peru, were more affected by COVID-19. In addition, it deserves consideration that the
crisis caused by the virus was combined with country management problems. In countries like
Bolivia and Chile, there was a context of superficial trust in institutions, massive protests, and
social unrest in the months before the pandemic. Between April and May 2020, several countries
reduced intensity of the measures initially implemented (Gonzalez-Bustamante, 2021).

Thus, based on the hypothesis that it is possible to comparatively assess the progress of the disease
in South American countries using time-varying plots and choropleth quantile maps, we evaluated
the applicability of geomatics techniques to assess the progress of the COVID-19 pandemic in 13
South American countries.

1.9.4 Methods

Latin America’s development during the 20th century has been associated with historical so-
cioeconomic processes of inequality and lack of trust in institutions (Grassi and Memoli, 2016).
In addition, there has been an inability to adequately provide public goods and services to the
population (Gonzilez-Bustamante, 2021).

COVID-19 data were obtained from government sources at the national level obtained from the
Internet through the R package covipio (Guidotti, 2021), to evaluate the temporal progress and
map the COVID-19 pandemic in South America in the year 2020. Temporal variation on deaths,
confirmed cases, recovery cases, and tests performed of COVID-19 in South American countries
were determined between 01/22/2020 to 12/31/2020. Four reference dates for mapping COVID-
19 in South America were set on 4/19/2020, 7/28/2020, 9/16/2020, and 11/4/2020, respectively.
Summary statistics were determined on the data of deaths, confirmed cases, recovery cases, and
tests performed of COVID-19 in South America in the same periods when the mapping was
performed.

The R package rnaturalearth (South, 2021) was used to obtain the country database. Geocom-
putation functions were used to perform operations to obtain a subset and joins in a geographic
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database. Mappings were performed with the R packages sf (Pebesma, 2021, 2018), dplyr (Wick-
ham et al., 2021), tidyr (Wickham, 2021), rgdal (Bivand et al., 2019), tmap (Tennekes, 2021,
2018), and ggplot2 (Wickham et al., 2020).

1.9.4.1 Installing R packages

The install.packages function was used to install the sf, tmap, dplyr, COVID19, readr, rnatu-
ralearth, rgdal, gridExtra and ggplot2 packages through R console.

install.packages("sf")

install.packages("tmap")

install.packages ("dplyr")

install.packages('"COVID19")

install.packages('"rnaturalearth")

install.packages('"rgdal")

install.packages("ggplot2")

install.packages ("tidyr")

install.packages('"readr", repos=c("http://rstudio.org/_packages",
"http://cran.rstudio.com"))

install.packages("gridExtra")

1.9.4.2 Enabling R packages

The library function was used to enable the sf, tmap, dplyr, COVID19, readr, rnaturalearth,
rgdal, raster, gridextra and ggplot2 packages through R console.

library(sf)
Library(tmap)
Library(dplyr)
library(COVID19)
library(rnaturalearth)
library(rgdal)
library(ggplot2)
Library(tidyr)
library(readr)
library(raster)
library(gridExtra)

1.9.4.3 Obtaining updated COVID-19 data

The covibio function was used to get up-to-date COVID-19 data at the country level by
12/31/2020.

d <- COVID19::covidl9(end = "2020-12-31")

The data can be exported to a directory on your computer using the write.csv function for further
use.
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write.csv(d, "files/d.csv")

The data can then be imported into the computer to perform temporal and geospatial analysis.

d <- readr::read_csv("files/d.csv")

1.9.4.4 Obtaining geospatial polygons with country borders

Geospatial polygons with country borders can be obtained with the ne_download function. For a
more detailed analysis of this function, a review of a vignette” on the subject is recommended.

# Get geographic data
world_rnatural <- rnaturalearth::ne_download(returnclass = "sf")
names (world_iso) # Evaluate available variables in database

Geospatial polygons can be exported into a particular directory for posterior use through of the
st_write function.

st_write(world_iso, 'G:/covid/world_iso.shp', "world_iso.shp")

The read_sf function was used to import the polygons back into R.

world_iso <- sf::read_sf("files/world_iso.shp")

1.9.4.5 Obtaining subset of polygons with country borders of South America
A subset of polygons with country borders was taken in South America and the countries of South

America: Argentina, Chile, Falkland Islands, Uruguay, Brazil, Bolivia, Peru, Colombia, Venezuela,
Guyana, Suriname, Ecuador, and Paraguay.

# Subset in South America
world_america <- world_iso[world_iso$CONTINENT == "South America",]

# Subset in South American countries

ARG <- world_iso[world_iso$ISO_A3_EH == "ARG'",] # Argentina
CHL <- world_iso[world_iso$ISO_A3_EH == "CHL",] # Chile

FLK <- world_tiso[world_iso$ISO_A3_EH == "FLK",] # I. Falkland
URY <- world_iso[world_iso$ISO_A3_EH == "URY",] # Uruguay

BRA <- world_iso[world_iso$ISO_A3_EH == "BRA",] # Brazil

BOL <- world_iso[world_iso$ISO_A3_EH == "BOL",] # Bolivia

PER <- world_iso[world_iso$ISO_A3_EH == "PER",] # Peru

7https://rdrr."io/cran/rnatura'Learth/f/v‘igne’c‘ces/whatf'isfafcountry. Rmd
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1.9.4.6 Merging global COVID-19 data with country polygons in South America

Global COVID-19 data was merged with country polygons in South America and for each of the
13 countries evaluated.

# Merge COVID-19 data in South America
w <- dplyr::left_join(world_america, d, by = c("ISO_A3_EH"= "id"))

# Merging of COVID-19 data in

ar
ch
fl
ur
br
bo
pe
co
ve
gu
su
ec

pr

dplyr::left_join(ARG, d, by = c("ISO_A3_EH"=

dplyr::left_join(CHL,
dplyr::left_join(FLK,
dplyr::left_join(URY,
dplyr::left_join(BRA,
dplyr::left_join(BOL,
dplyr::left_join(PER,
dplyr::left_join(COL,
dplyr::left_join(VEN,
dplyr::left_join(GUY,
dplyr::left_join(SUR,
dplyr::left_join(ECU,
dplyr::left_join(PRY,

by

[P

[o T o R o i« NN o BN e Nl « R o Bl o Bl o Bl o Bl o N

# Group the results

all <- rbind(ar, ch, fl, ur, br,

c("ISO_A3_EH"=
by = ¢("ISO_A3_EH"=
by = ¢("ISO_A3_EH"=
by = c¢("ISO_A3_EH"=
by = ¢("ISO_A3_EH"=
by = c("ISO_A3_EH"=
by = ¢("ISO_A3_EH"=
by = ¢("ISO_A3_EH"=
by = c¢("ISO_A3_EH"=
by = ¢("ISO_A3_EH"=
by = c("ISO_A3_EH"=
by = c("ISO_A3_EH"=

South American countries

"id")) # Argentina
"id")) # Chile
"id")) # I. Falkland
"id")) # Uruguay
"id")) # Brazil
"id")) # Bolivia
"id")) # Peru
"id")) # Colombia
"id")) # Venezuela
"id")) # Guyana
"id")) # Suriname
"id")) # Ecuador
"id")) # Paraguay

bo, pe, co, ve, gu, su, ec, pr)

The spatial polygons of South America with the COVID-19 data were exported for further use.

st_write(w,

'G:/covid/w.shp', "w.shp")

1.9.4.7 Setting reference dates for mapping COVID-19 in South America

Four reference dates for mapping COVID-19 in South America were set on 4,/19/2020, 7/28,/2020,
9/16/2020, and 11/4/2020. The filter function was used to obtain the data at the periods of
interest.

# COVID-19 data on 4/19/2020
w_200 <- w %>%

filter (date == as.Date('"2020-04-19", na.rm =
# COVID-19 data on 7/28/2020
w_100 <- w %>%

™
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filter (date == as.Date('"2020-07-28", na.rm = T))
# COVID-19 data on 9/16/2020
w_50 <- w %>%

filter (date == as.Date('"2020-09-16", na.rm = T))
# COVID-19 data on 11/4/2020
w_1l <- w %>%

filter (date == as.Date('"2020-11-4", na.rm = T))

1.9.4.8 Area description

The population of South America has not been evenly distributed, with sparse areas alongside oth-
ers of relatively high density due to physical and human factors. Among the causes of population
distribution in South America are desert regions, such as Patagonia, the dry pampa, Atacama,
and Sechura; equatorial forest zones, such as the Amazon; and grassland areas, with extensive
cattle raising and lower population density. Based on mapping of the population in South Amer-
ica, Brazil had the largest population followed by Colombia, Argentina, Peru, Venezuela, Chile,
Ecuador, Bolivia, Paraguay, Uruguay, Guyana, Suriname, and the Falkland Islands (Figure 1.7).

gtm(w, fill="population", fill.style="cat", text="ISO_A3_EH",
text.col="black", fill.palette="Spectral)

The same mapped results were observed in graphical format for better comparison (Figure 1.8).

ggplot(all, aes(x = ISO_A3_EH, y = population)) +
geom_bar (stat="1identity", fill="grey50") +
xlab ("Country abbreviation")+
ylab("Population")

1.9.5 Results

The temporal variation on deaths, confirmed cases, recovery cases and tests performed (Figure
1.9) of COVID-19 in South American countries were determined using the ggplot2 function.

# Deaths

a<-ggplot(all, aes(x = date, y = deaths)) +
geom_line(aes(color = NAME_LONG), size = 1) +
scale_color_manual(values = c("blue", "red", "yellow", '"green",
"black", "gray", "tan3","purple", "brown","orange","cyan",
"darkorchid","coral"))+
labs(color = "Country")

# Confirmed cases

b<-ggplot(all, aes(x = date, y = confirmed)) +
geom_line(aes(color = NAME_LONG), size = 1) +
scale_color_manual(values = c("blue", "red", "yellow", "green",
"black", "gray", "tan3","purple", "brown","orange","cyan",
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FIGURE 1.7: Population mapping of South American countries.
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FIGURE 1.8: Population of South American countries in a barplot.

"darkorchid","coral"))+
labs(color = "Country")

# Recovery cases

c<-ggplot(all, aes(x = date, y = recovered)) +
geom_Lline(aes(color = NAME_LONG), size = 1) +
scale_color_manual(values = c("blue", "red", "yellow", "green",
"black", "gray", "tan3","purple", "brown","orange","cyan",
"darkorchid","coral"))+
labs(color = "Country")

# Tests performed

d<-ggplot(all, aes(x = date, y = tests)) +
geom_line(aes(color = NAME_LONG), size = 1) +
scale_color_manual(values = c("blue", "red", "yellow", "green",
"black", "gray", "tan3","purple", "brown","orange","cyan",
"darkorchid","coral"))+
labs(color = "Country")

grid.arrange(a, b,c,d, ncol=2)

Based on the disease progress curves, the highest increasing number of deaths was observed in
Brazil, followed by Peru, Colombia, Argentina, Chile, Ecuador, and Bolivia. In the other countries,
no significant trend of increasing deaths over time was observed. The death curve seemed to reach
a point near the climax in Brazil, Peru and Colombia after October, with values of approximately
150,000 and 30,000 and 25,000 deaths, respectively. Similar patterns of temporal variation were
observed with respect to the number of confirmations and cases of recovery from the disease,
so that after October more than 5 million confirmed cases and 4 million cases of recovery were
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FIGURE 1.9: Time variation of COVID-19 deaths, confirmed cases, recovery cases and tests
performed in South American countries in 2020.

observed in Brazil, respectively. In the case of testing to assess the incidence of the disease,
the highest amount of testing was done in Peru, followed by Chile and Ecuador, with similar
distribution of the number of tests over time, reaching values above 4 million tests after October.
In the other countries, the number of tests performed was approximately 500,000 after October.

Summary statistics were determined on deaths, confirmed cases, recovery cases, and tests per-
formed for COVID-19 in South America on 4/19/2020, 7/28/2020, 9/16/2020, and 11/4/2020,
through the summary function (Table 1.4).

# Deaths

summary (w_1[12]) # 11/4/2020
summary (w_50[12]) # 9/16/2020
summary (w_100[12]) # 7/28/2020
summary (w_200[12]) # 4/19/2020
# Confirmed cases

summary (w_1[10]) # 11/4/2020
summary (w_50[10]) # 9/16/2020
summary (w_100[10]) # 7/28/2020
summary (w_200[10]) # 4/19/2020
# Recovery cases

summary (w_1[11]) # 11/4/2020
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summary (w_50[11]) # 9/16/2020
summary (w_100[11]) # 7/28/2020
summary (w_200[11]) # 4/19/2020

# Tests performed

summary (w_1[9]) # 11/4/2020

summary (w_50[9]) # 9/16/2020
summary (w_100[9]) # 7/28/2020
summary (w_200[9]) # 4/19/2020

21

Based on the summary statistics, regarding the number of deaths in South America, there was
an increase in the minimum, average and maximum value of deaths over time in the four time
periods evaluated, with the minimum value of one death being observed on 4/19/2020 and the
maximum of 161246 deaths on 11/4/2020. Regarding the number of confirmations, recoveries
and tests, there was also an increase in minimum, average and maximum values over the four

evaluation periods.

TABLE 1.4: Summary statistics of deaths, confirmed cases, recovery cases and tests of COVID-
19 performed in South America, on 4/19/2020, 7/28/2020, 9/16/2020 and 11,/4,/2020.

Variable Statistic Time Period
4/19/2020  7/28/2020  9/16/2020 11/4/2020
Deaths Minimum 1.00 20.0 45 61
Deaths First Quartile 8.75 42.5 407 643
Deaths Median 82.00 2949.5 9237 10731
Deaths Mean 326.17 11639.8 19463 24970
Deaths  Third Quartile 262.75 9682.0 15170 32599
Deaths Maximum 2491.00 89060.0 134248 161246
Confirmed Minimum 10.0 396 1856 3245
Confirmed First Quartile 243.5 3883 23976 50248
Confirmed Median 1683.5 77303 125198 156748
Confirmed Mean 6883.2 322351 607269 818330
Confirmed Third Quartile 9623.0 287995 625856 960862
Confirmed Maximum 39197.0 2503681 4425451 5594098
Recovery Minimum 6.0 181 1302 2770
Recovery  First Quartile 38.5 2520 12827 35115
Recovery Median 503.5 28627 92047 130945
Recovery Mean 1687.8 230339 511714 732757
Recovery = Third Quartile 1995.8 168543 481411 867410
Recovery Maximum 6811.0 1885035 3853829 5078162
Tests Minimum 4135 107321 205278 330875
Tests First Quartile 10995 142118 277645 374486
Tests Median 28828 827583 1967410 3217537
Tests Mean 50023 1448498 2962591 4402835
Tests Third Quartile 75418 1563693 3018946 44278558
Tests Maximum 143745 6359398 14149045 21518065

The mapping of deaths (Figure 1.10), confirmed cases (Figure 1.11), recovery cases (Figure 1.12)
and tests (Figure 1.13) of COVID-19 in South America were performed on 4,/19/2020, 7/28,/2020,

9/16/2020, and 11/4/2020, through of the gtm and tmap_arrange functions.
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ml<-qtm(w_1,fill="deaths",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="11/4/2020")
m2<-qtm(w_50,fill="deaths",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="9/16/2020")
m3<-qtm(w_100,fill="deaths",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="0OrRd", title="7/28/2020")
m4<-qtm(w_200,fill="deaths",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="4/19/2020")

current.mode <- tmap_mode("plot")
tmap_arrange(ml, m2, m3, m4, nrow=2)
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FIGURE 1.10: Quantile mapping of the number of deaths by COVID-19 on 4/19/2020,

7/28,/2020, 9/16/2020, and 11,/4,/2020.
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cl<-qtm(w_1,fill="confirmed",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="0rRd", title="11/4/2020")
c2<-qtm(w_50,fill="confirmed",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="0OrRd", title="9/16/2020")
c3<-qtm(w_100,fill="confirmed",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="0OrRd", title="7/28/2020")
c4<-qtm(w_200,fill="confirmed",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="4/19/2020")

current.mode <- tmap_mode("plot")
tmap_arrange(cl, c2, c3, c4, nrow=2)

# Recovery cases

ri<-qtm(w_1,fill="recovered",fill.style="quantile", text="ISO_A3_EH",
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FIGURE 1.11: Quantile mapping of the number of confirmed cases of COVID-19 on 4/19/2020,
7/28/2020, 9/16,/2020, and 11/4/2020.

text.col="black", fill.palette="OrRd", title="11/4/2020")
r2<-qtm(w_50,fill="recovered",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="9/16/2020")
r3<-gqtm(w_100,fill="recovered",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="7/28/2020")
ra<-qtm(w_200,fill="recovered",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="4/19/2020")

current.mode <- tmap_mode("plot")

tmap_arrange(rl, r2, r3, r4, nrow=2)

# Tests performed

tl<-qtm(w_1,fill="tests",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="11/4/2020")
t2<-qtm(w_50,fill="tests",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="9/16/2020")
t3<-qtm(w_100,fill="tests",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="OrRd", title="7/28/2020")
t4<-qtm(w_200,fill="tests",fill.style="quantile", text="ISO_A3_EH",
text.col="black", fill.palette="0OrRd", title="4/19/2020")
current.mode <- tmap_mode("plot")

tmap_arrange(tl, t2, t3, t4, nrow=2)

In relation to the number of deaths, in the first evaluation period, on 04/19/2020, in Brazil, Peru
and Ecuador there were more deaths, followed by Colombia and Ecuador. In the same period, in
Paraguay, Guyana and Suriname there were fewer deaths. In Peru and Chile there was a reduction
in the number of deaths in the last period. In Argentina, there was increase in confirmed cases
and recovery of the disease in the last evaluated period. On 07/28/2020, there were more deaths
in Brazil, Peru and Chile, followed by Colombia and Argentina. On 09/16,/2020, there were more



24 1 Scientific Applications of Surveying
11/4/2020 9/16/2020
recovered
[ | 2770 18 13,057
[ 13,007 8 98,100
80,130 00 385 001
D50 12 507,088
st msorsg .
T/28/2020 4/19/2020

recovered

ETE

| 210
W
wom ATy
1TImEAN

FIGURE 1.12: Quantile mapping of the number of COVID-19 recovery cases on 4/19/2020,
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deaths in Brazil, Peru and Colombia. On 11/04/2020, there were more deaths in Brazil, Colombia
and Argentina. Similar patterns of confirmed cases mapped by quantiles were observed in relation
to the number of deaths. The highest number of tests was performed in Chile and Peru in all
evaluation periods.

1.9.6 Discussion

The pandemic is still ongoing in the South American countries as of the writing of this book. In
Brazil, the number of deaths was much higher than in other countries of the continent, which
may cause political and economic repercussions.

Furthermore, as information about tests performed for COVID-19 was not available, it can be
inferred that there may be problems in overcoming the pandemic related to the state capacity
to overcome the destructive progress of the disease. Nevertheless, we observed a reduction in the
number of deaths in Peru and Chile in the last period evaluated together with an increase in recov-
ery cases. According to Gonzalez-Bustamante (2021), even with socioeconomic crisis, suppression
strategies associated with consistent testing of COVID-19 were instrumental in addressing the epi-
demic. As long as no vaccine was available, a return to normal activities as in the pre-pandemic
period may be risky. Maintaining the balance between the adverse economic effects associated
with paralyzing countries in the face of rigorous intervention may be a complex and challenging
task for South American governments in the coming months.

Studies could still be conducted to assess the pattern of spatial dependence of the disease in South
America and its relationship with climatic factors, population data and more detailed disease data
granularity by regions within countries, in order to better elucidate strategies for pandemic control
and mitigation.

1.9.7 Conclusions

Temporal variation plots of COVID-19 progress and quantile choropleth maps enabled compara-
tive assessment of the disease spatio-temporal progress in South American countries.

1.10 Solved Exercises

1.10.1 List the topics used in the preparation of a scientific paper in the area
of geomatics.

A: Title; Authors; Introduction; Objectives; Methodology; Results; Conclusions; References.

1.10.2 List the topics used in the elaboration of a scientific project in the field
of geomatics.

A: Title; Authors; Introduction; Hypothesis; Objectives; Methodology; Expected Results; Tech-
nology Dissemination; Team; References.
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1.10.3 List the main applications of geomatics.

A: Agricultural sciences, archaeology, environmental monitoring and management, health and
epidemiology, emergency services, navigation, marketing, regional and local cost planning, plan-
ning and management of highways, railroads, and airways, property valuation and inventory,
social studies, tourism, everyday utilities for locating, managing, and planning water, drainage,
gas, electricity, telephone, and cabling services.

1.10.4 The scientific question asked in a research project in geomatics is:

Methodology.
Conclusions.
Bibliographical references.
Objectives.

Hypotheses. [X]

0 TP

1.11 Homework

Based on the first two solved exercises presented by the teacher, specify the content of each answer
topic according to what is presented in the theoretical approach of the chapter.

1.12 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter (Table 1.5).

TABLE 1.5: Slide show and video presentation on scientific applications of geomatics with R.

Guide Address for Access
1 Slides on project preparation®
2 Surveying examples’
3 Collection and analysis of geospatial data from the NASA AppEEARS platform'’
4 How to Write an Effective Research Paper!!

8http://www. sergeo.deg.ufla.br/geomatica/book/cl/presentation.html#/
ghttps ://youtu.be/SPCewaAfqPA

Ohttps://youtu.be/GbIE4ATKTdrc

11 https://youtu.be/cMIWtNDqGzI
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1.13 Research Suggestion

The development of scientific research on geomatics is stimulated through activity proposals that

can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 1.6).

TABLE 1.6: Practical and research activities used or adapted by students using scientific
applications of geomatics with R.

Activity Description
1 Collecting geospatial data infrastructure through the NASA AppEEARS
platform'?
2 Collecting of geospatial data infrastructure from the Sidra IBGE system!'?
3 Performing spatio-temporal analysis of COVID-19 in other regions, seasons, and

surveying methodologies

1.14 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Scientific Applications of Geomatics with R”, on a single
A4 page in order to show the student’s abilities to summarize a subject presenting key points
considered of greater importance today.

12https ://1lpdaac.usgs.gov/tools/appeears/
13https://s‘idra.'ibge.gov. br/pesquisa/pam/tabelas
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Introduction to Measurement Units

2.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o What is the difference between geomatics and other sciences?

e How did the history of topographic measurements on the Earth’s surface come about?

e« What is the difference between geodetic and plane surveys?

o What are the applications of surveying?

o What are the legal requirements for the application of geomatics?

o What are the main federal survey and mapping agencies, professional organizations and journals
on geomatics?

e How can the future of geomatics be?

e How can R software and R packages be used in geomatics?

e How to perform calculations involving units of measure in R and measurements package.

2.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

¢ Understand the meaning of geomatics and its difference from other sciences.

o Briefly know the history of the evolution of topographic measurements on the Earth’s surface.

o Understand the difference between geodesic and plane surveys in the analysis of positional
accuracy of measurement systems.

o Understand surface, aerial and satellite surveys and their applications.

¢ Understand the legal requirements for the application of geomatics and the main federal agencies
of survey and mapping, professional organizations and periodicals.

o Know the future of geomatics and its function with the use of the R Program with geomatics
packages.

¢ Apply calculations involving units of measure using R software and the measurements package.

2.3 Introduction

Topography, from the Greek topos (place) and graphein (describe), is traditionally defined as
science applied to measuring and representing the configuration of position and altitude of a part

DOI: 10.1201/9781003184263-2 29
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of the environment with improvements on its surface (Borges, 2013). Besides being science and
technology, topography is defined as the art and technology to determine relative positions of
points on the Earth’s surface, with the instrument appropriate to the accuracy and precision re-
quired. With the advent of geocomputation and electronics associated with topographic surveys,
the term “topography” has been replaced by geomatics (Alves and Silva, 2016), encompassing
methods of mathematical modeling, georeferencing, cartographic representation and geoinforma-
tion for surveying terrestrial environments (Silva and Segantine, 2015).

In general, topography and geomatics have been used in disciplines with methods to measure
and collect information about the physical environment, and process and disseminate a variety
of multidisciplinary products (Alves and Silva, 2016). Some terms such as “geomatics”, “geomat-
ics engineering”, and “geoinformatics” are applied in the science of geographic information as
an approach to obtain, manage and apply the disciplines of topography, photogrammetry, re-
mote sensing, cartography and geocomputation as components of geomatics to solve spatial and

temporal problems through computer systems.

Geomatics has become indispensable for modern life. Topographic surveys are used in different
applications such as (Alves and Silva, 2016):

e Mapping the Earth above and below sea level;

e Preparation of navigation charts for use in air, land and sea;

o Establishing public and private land property boundaries;

¢ Development of databases for land use and natural resources useful for environmental manage-
ment;

e Determining facts about the Earth’s size, shape, gravity, and magnetic fields;

e Preparation of charts of the Earth, other planets, stars and objects in the universe.

Detailed measurement applications can be performed, such as determining the geometry of in-
dividual plants for monitoring and precision management in agriculture using laser scanning
(LiDAR)! associated with global navigation satellite system data information for spatial posi-
tioning (Figure 2.1).

2.4 Geomatics

The term “geomatics” is established as a quantitative and computation approach to the pro-
cessing of spatial information, by combining traditional surveying and geography, influenced by
theories and methods developed in the disciplines of computation and information science, called
(geo)informatics (Sallis and Benwell, 1993). Geomatics can be defined as an interrelated approach
to measuring, analyzing, managing, storing, and presenting spatial data descriptions and locations.

Geomatics was introduced by the Canadian Association of Aerial Surveyors to cover the disci-
plines of Topography, Remote Sensing and Geographic Information Systems (GIS). It is widely
accepted in the United States, Canada, Australia, the United Kingdom and Brazil, including
in sectors and disciplines of universities that have adopted Geomatics rather than Topography
which motivated its practical form and the objective of the survey in recent years with an emphasis
on geoinformatics. Recent technological advances have provided new tools for measurement and
acquisition of information for computation and dissemination of information. Other factors are
related to the demand for monitoring, management and regulation of land, water, air and other
natural resources related to local, regional and global environments (Alves and Silva, 2016).

1https://youtu.be/QJGcXGharfY
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FIGURE 2.1: Artist’s conception of global positioning system Block II-F satellite in Earth’s
orbit. (Courtesy of NASA.)

2.5 Geomatics and Other Sciences

Geomatics is formed by a set of sciences such as (Silva and Segantine, 2015; Alves and Silva,
2016):

o Geodesy;

o Cartography;

o Topography;

e Measurements and units of measurement;
e Theory of errors and statistics;

e Photogrammetry;

o Remote sensing;

e Geographic information system;

o Global satellite positioning system.

With this, geomatics has been studied in many applied academic areas, such as (Alves and Silva,
2016):
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e Agronomys;

o Agricultural engineering;

o Environmental engineering;
e Archaeology;

e Astronomy;

e Forest engineering;

o Geography;

o Geology;

o Geophysics;

e Architecture;

e Meteorology;

o Paleontology and seismology;
o Civil and military engineering;
e Zootechnics.

2.6 Geodetic and Plane Surveys

Geodetic and plane surveys are topographic survey classifications as the reference adopted on the
basis of calculations of field measures. In the plane survey, except for leveling, it was assumed
that the reference base for fieldwork was a horizontal surface. The direction of the plumb line
and gravity are considered parallel along the raised region and all angles observed are presumably
plane angles. For limited-sized areas, the ellipsoid surface was actually close to the plane. In an
arc on the Earth’s surface with 18.5 km, the horizontal distance between the ends of the arc was
approximately 0.65 cm greater than the horizontal distance (McCormac et al., 2012; Alves and
Silva, 2016). Therefore, it is evident that, except in surveys of large areas, the Earth’s surface
can be approximated by a plane, simplifying the calculations and techniques used. In general,
algebra, analytical and plane geometry and plane trigonometry are used in the calculations of plane
topographic surveys. Even for large areas, map projections allow plane topography calculations
to be used (Ghilani and Wolf, 1989; Alves and Silva, 2016).

In the geodesic survey, the calculation of the Earth’s curvature was considered in an ellipsoid with
the approximate size and shape of the Earth. Geodesic methods are applied to determine relative
positions of landmarks separated by large distances and to calculate the length and direction
of large lines between these landmarks. The landmarks served as the basis for referencing other
topographical surveys of smaller extents (Ghilani and Wolf, 1989; Alves and Silva, 2016) (Figure
2.2).

2.7 Types of Specialized Surveys

Many types of surveys have been specialized for specific purposes. The career in geomatics may
vary according to the type of survey and mapping required, according to the following classi-
fications in Table 2.1 (Ghilani and Wolf, 1989; Kavanagh and Slattery, 2015; Alves and Silva,
2016):
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-

FIGURE 2.2: Curvature of the Earth considered in determining geodetic coordinates, distances
and geodetic areas, giving greater accuracy in measurement of applied geodetic surveying.

TABLE 2.1: Surveys specialized in geomatics.

Type of Survey

Description

Control
Topographic

Land registration
Hydrographic

Alignment
Construction

Survey of works built

Established horizontal and vertical network of landmarks to initiate
other surveys. Many control surveys are performed with instruments
Determination of locations of natural, artificial characteristics and
altitude of locations used in mapping
Established lines of borders and properties
Determination of the margin and depth of rivers, streams, oceans,
reservoirs and other water bodies
Carried out to plan, design and build highways, pipelines and other
linear projects
Determination of line, grid, elevation control, horizontal position,
dimensions, and settings for construction operations
Used to obtain the precise final locations of engineering work and
the records of changes incorporated into the construction line
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Type of Survey Description
Mine Carried out below and above the surface to guide the realization of
tunnels and other operations associated with mining
Solar Used to map solar servitudes, obstructions according to solar angles
to meet requirements for zoning boards and insurance companies
Industrial Extremely accurate measurement method for low tolerance

manufactured processes

Surveys are classified according to the altitude level used to obtain the data, such as:

o Surface survey;
o Aerial survey;
o Satellite survey.

In the surface survey, measurements are performed with equipment for surface readings, such as
automatic levels and electronic total station instruments. Aerial surveys are performed by pho-
togrammetry or remote sensing. In the photogrammetry, cameras are used attached to airplanes
or drones to obtain images of remote areas, while remote sensing used cameras and other types
of sensors on board spacecraft or satellites. Aerial methods have been used in specialized types
of surveys, except for optical alignment. Photographs taken from the surface are also used. Satel-
lite surveys included surface measurements performed by GNSS receivers, or the use of satellite
images in mapping and monitoring large extents on the Earth’s surface (Alves and Silva, 2016).

2.8 Federal Surveying and Mapping Agencies

Some government agencies carry out work in support of topographic surveys in Brazil, such as
(Alves and Silva, 2016):

o Instituto Brasileiro de Geografia e Estatistica (IBGE);

o Instituto Nacional de Colonizagao e Reforma Agréaria (INCRA);

« Instituto Nacional de Pesquisas Espaciais (INPE);

e Ministério do Meio Ambiente;

o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovéveis (IBAMA);
o United States Geological Survey (USGS);

o National Aeronautics and Space Administration (NASA);

o European Space Agency (ESA).

Documents from the Brazilian Association of Technical Standards, such as NBR13133, establishes
the conditions required for the execution of topographic surveys in Brazil (ABNT, 1994).

2.9 Professional and Surveying Science Organizations

Professional organizations are used to facilitate communication among surveyors, to update eth-
ical standards in the practice of surveying in favor of knowledge progress. Some international
organizations are (Alves and Silva, 2016):
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e American Congress on Surveying and Mapping(ACSM);

e American Society for Photogrammetry and Remote Sensing (ASPRS);
o Surveying and Geomatics Educators Society (SAGES);

e Urban and Regional Information Systems Association (URISA);

o Canadian Institute of Geomatics (CIG);

o International Federation of Surveyors (FIG).

Some scientific journals generate knowledge and updates in geomatics, such as (Alves and Silva,
2016):

o Tectonophysics;

o Studia Geophysica et Geodaetica;

e Remote Sensing of Environment;

o Journal of Geodesy;

o International Journal of Health Geographics;

o ISPRS Journal of Photogrammetry and Remote Sensing;
o Computers & Geosciences;

o Farth-Science Reviews;

o Geomorphology;

o International Journal of Geophysics;

o Science of the Total Environment;

o Journal of Geophysics and Engineering;

o Advances in Space Research;

o Atmospheric Research

o International Journal of Applied Earth Observation and Geoinformation;
o Survey Review,

o Environmental Monitoring and Assessment;

o Applied Geomatics;

o Measurement.

2.10 Future Challenges in Geomatics

Technological advances enabled greater demand to obtain data with high standard of accuracy
and the processing of information in computer systems. With this, in a matter of a few years, the
demand for surveyors and geomatics professionals varied rapidly.

Some future challenges are (Bhattacharjee and Clery, 2013; Alves and Silva, 2016):

o Update the spatial reference systems of horizontal and vertical control point networks;

e Plan and design the expansion of urban and rural areas;

o Plan and design fast transit systems connecting large cities;

e Determine environmental impacts and perform risk analysis;

e Do accurate research on surface deformation to monitor existing structures such as dams, bridges
and buildings;

e Search for new maps and update existing products on planets, moons, stars and other extrater-
restrial objects (Figure 2.3).
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FIGURE 2.3: Structure of the Milky Way, including the location of the spiral arms and other
components such as the bulge deduced from survey data from ESO’s VISTA telescope at the
Paranal Observatory. (Courtesy of NASA /JPL-Caltech/ESO/R. Hurt.)

2.11 R Software and R Packages for Geomatics

R is considered a powerful computation language for geomatics with thousands of geographic
functions. In R you can obtain support for vector and raster data with visualization possibilities,
statistical and geospatial analyses, packages and statistical methods. In open source GIS, such
as ‘QGIS’, geographic analyses are accessible globally. In GIS there was a tendency to emphasize
graphical user interfaces with minimal reproducibility, although many can be used in the command
line. R was used with the command-line interface and maximum reproducibility (Lovelace et al.,
2019b).

R has been used by researchers to create R packages across all disciplines, with thousands of R
packages available on the Comprehensive R Archive Network CRAN? (Tippmann, 2015). This
book applied R in questions related to surveying technology and science (Figure 2.4).

2I'n:tp://cran. r-project.org/
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FIGURE 2.4: R console used for science and technology applications of geomatics.

2.12 Computation

Several packages for measurements, mapping and geospatial analysis are available in R. The mea-
surements is the package used for measuring physical units in computation practice of this chapter.
Other packages in advanced geomatics spatial analysis for data interpolation and mapping are
geoR and gstat. The maptools package can be used to read shapefile vector files. The sp and sf
packages are also used in vector geometries usage situations. Packages for matrix files, digital im-
age processing, and map algebra are, for example, raster and RStoolbox. Cartographic projections
and geometric operations can be used in the rgdal package. Spherical trigonometry calculations
can be performed in the geosphere package. We can use ggmap, rasterVis, tmap, leaflet and
mapview for viewing and mapping obtained results (Lovelace et al., 2019b). Therefore, R packages
can be applied in scientific research on geomatics.

We presented some basic topics of R package installation settings and some units of measure
used in evaluations of distance, angles, and conversion of units into products or rates, scales, and
graphical error. Finally, we demonstrated how to evaluate the version of the operating system
and R used throughout the book, as well as a method for searching R packages by keywords.
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2.12.1 Setting up directory in R

The getwd function is used to evaluate the working directory in R. The setwd function is used to
perform directory configuration in R and to address new working directory.

getwd ()
setwd ("E: /Aulas/Topografia/markdown/Capl'")

2.12.2 Installing R packages

The install.packages function is used to install the measurements package in the R console.

install.packages(''measurements")

2.12.3 Enabling R packages

The library function is used to enable the measurements package in the R console.

library(measurements)

2.12.4 Measurement units

Measurement is used to compare one quantity with another, of the same nature, used as a stan-
dard, from a measurement method and procedure. Therefore, measurement is the set of operations
required to determine the final value of a quantity. In possession of a measurement pattern, a
unit of measure is defined. Other definitions are shown in Table 2.2 (Silva and Segantine, 2015).

TABLE 2.2: Definitions of terms used in measurement.

Term Definition
Measurement Logical sequence of operations described to perform the measurements
method
Measurement Set of operations described to perform measurements according to an
procedure established method
Measuring Device used to perform measurements to provide information about the
equipment physical value of a measured variable
Calibration Set of operations performed to compare measured values with a known
accuracy pattern
Metrology Science that groups knowledge and techniques to measure and interpret

measurements performed

A “quantity” is defined as a property of a phenomenon, body, or substance, with magnitude
that can be expressed as a number and a reference. This reference can be a measurement unit, a
measurement procedure, a reference material, or a combination of such. A measurement system
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consists of base units for base quantities, and derived units for derived quantities (Pebesma and
Bivand, 2021).

The metric measurement system used in Brazil is called the International System of Units (SI)
(INMETRO, 2012); however, other systems are developed for similar purposes, such as the English
metric system. Measurement magnitudes are provided in specific units. In the topographic survey,
the most used units are length, area, volume and angle. In SI, the measurement units of distances
determined by topography instruments are millimeter, centimeter, meter and kilometer, equivalent
to 0.001, 0.01, 0.1, 1 and 1000 m, respectively (Alves and Silva, 2016).

ST consists of seven base units: length (meter, m), mass (kilogram, kg), time (second, s), electric
current (ampere, A), thermodynamic temperature (Kelvin, K), amount of substance (mole, mol),
and luminous intensity (candela, cd). Derived units are composed of products of integer powers
of base units, as speed (m s~ !), density (kg m~3) and area (m?) (Gdbel et al., 2006; Pebesma and
Bivand, 2021).

Regarding the area unit, the most used unit is the square meter (m?). For large areas of land, the
area is generally accounted for hectares (ha), which in turn amounts to 10,000 m?. In surveying
by satellite images, the km? unit has generally been adopted. For volumes, the cubic meter unit
(m?) has been adopted. Angle measurements are subdivided into degree (°), minutes (') and
seconds ("), as proposed in the sexagesimal system. However, radian is also accepted as a unit of
measurement for angles. A radian is the angle subtended by an arc of a circle with length equal
to the radius of the circle. Therefore, 2 7 rad is equal to 360° and 1 rad, equal to 57° 17’44.8” or
57.2958°. Other divisions of angles used to divide a circle by other systems are the grade or gon,
dividing the circle into 400 parts and the mils, used by the U.S. military to divide the circle into
6,400 units (Ghilani and Wolf, 1989). Although the exact value of a measured quantity is never
known, it can be known exactly what the sum of a group of measures is. For example, the sum
of the three inner angles of a triangle should be 180°. For a rectangle, the sum of the inner angles
must be 360°. If the angles of a triangle have been measured with the total value of approximately
180°, you must eliminate the measurement errors adjusting or revising each angle (Ghilani and
Wolf, 1989).

The metric system was originally developed in the 1790s in France. In the same period, the French
Academy of Sciences defined the metro as 1/10000000 of the length of the meridian that passed
through Paris, departing from Ecuador to the Pole. In later measures, it was found that the mea-
sure adopted 0.2 mm lower than the one originally proposed. In the 1960s and 1970s, significant
effort was made to adopt the SI in the United States as a system of weights and measures. This
initiative would facilitate the implementation of treaties and trade between countries. However,
there was a lot of resistance from agencies and people from some states, cities and localities, as
well as from some enterprises. As a result, the SI has not yet been made official in the U.S. The
confusion caused by the lack of standardization of the measurement system contributed to the
collision of the Mars Orbiter satellite on Mars, in 1999. The $125 million dollar satellite collision
occurred due to the use of U.S. system units by contracted companies which were mistaken for
SI units by the Propulsion Laboratory of the National Aeronautics and Space Administration
(NASA) (Ghilani and Wolf, 1989). Other measurement units and relationships used in geomatics
are described in Table 2.3 (Alves and Silva, 2016).

Absolute location in position and time requires a fixed origin with possibilities to measure other
absolute space-time points defined by a datum. A datum involves more than one geospatial di-
mensions. The combination of a datum and a measurement unit of scale defines a reference system

(Pebesma and Bivand, 2021).

In several R packages, there are unit conversions. For example, with the measurements package
(Birk, 2019) we can obtain a collection of tools to facilitate the work with physical measurements
and unit conversions, as an example by the function conv_unit. The conversion values are defined
based on international measurement authorities. While a lot of effort has been made to make
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conversions as accurate as possible, you should check to ensure that the conversions are accurate
enough for geomatics applications (Birk, 2019).

TABLE 2.3: Measurement units, conversion factors and important numbers in survey.

Unit of Measurement Description
Length 1 millimeter (mm) = 1000 micrometers (um); 1 centimeter (cm) =
10 mm; 1 meter (m) = 100 cm; 1 kilometer (km) = 1000 m
Area 10000 m? = 1 hectare (ha)
Volume 1 liter (L) = 1000 milliliters (mL); 1 m® = 1000 L
Mass 1 kilogram (kg) = 1000 grams (g); 1 ton (ton) = 1000 kg
GPS signal C/A code = 1.023 MHz; P code = 10.23 MHz; code L1 = 1575.42
MHz; 1.2 code = 1227.60 MHz; L5 code = 1176.45 MHz
Electronic distance 299792458 m s~! = speed of light or electromagnetic energy in a

vacuum; 1 Hertz (Hz) = 1 cycle per second; 1 kilohertz (kHz) =
1000 Hz; 1 megahertz (MHz) = 1000 kHz; 1 gigahertz (GHz) =
1000 MHz; 1.0003 = approximate index of atmospheric refraction;
760 mm of mercury = standard atmospheric pressure

Angles 1 circumference = 360° = 27 radians; 1 degree (1° = 607)
(minutes); = 60” (seconds); 1° = 0.017453292 radians; 1 radian =

57.29577951° = 57°17'44.806" ; 1 radian = 206264.8062”; 1

circumference = 400 grads; tan 1" = sen 1" = 0.000004848; © =
3.141592654

Error analysis 68.3% = 1 standard deviation (o) ; 0.6745 = (o) 50% error; 1.6449
= (o) 90% error; 1.9599 = (o) 95% error
Taping 0.0000116 = expansion coefficient of steel tape for 1°C'; 2000000

kg cm™2 = Steel elasticity module; 20°C = standard temperature
for measuring tape

Error analysis 68.3% = 1 standard deviation (o); 0.6745 = (o) 50% error; 1.6449
= (0) 90% error; 1.9599 = (o) 95% error
Taping 0.0000116 = expansion coefficient of steel tape for 1°C; 2000000 kg

cm ™2 = Steel elasticity module; 20°C = standard temperature for
measuring tape
Geodetic measurements 6371000 m = average radius of the Earth; 10000 km = distance
from Equator to pole, used as original base for meter length

Absolute location in position and time requires a fixed origin with possibilities to measure other
absolute space-time points defined by a datum. A datum involves more than one geospatial di-
mensions. The combination of a datum and a measurement unit of scale defines a reference system
(Pebesma and Bivand, 2021).

In several R packages, there are unit conversions. For example, with the measurements package
(Birk, 2019) we can obtain a collection of tools to facilitate the work with physical measurements
and unit conversions, as an example by the function conv_unit. The conversion values are defined
based on international measurement authorities. While a lot of effort has been made to make
conversions as accurate as possible, you should check to ensure that the conversions are accurate
enough for geomatics applications (Birk, 2019).

Another R package, the units (Pebesma et al., 2019), provides a class for maintaining unit
metadata, for numeric data with associated measurement units. Operations on objects of this
class retain the unit metadata and provide automated dimensional analysis based on dimensions
taken into consideration in computations and comparisons, eliminating a whole class of potential
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scientific programming mistakes (Pebesma et al., 2016). Applications using the units package are
presented in chapters 12 and 13.

2.12.5 Evaluate unit of measure

The units of measure of length, angle, area, and volume are obtained with the conv_unit_options
function of the measurements package.

names (conv_unit_options)

## [1] "acceleration" "angle" "area" "coordinate" "count"
## [6] "duration" "energy" "file_size" "flow" "length"
## [11] "mass" "power" "pressure" "speed" "temperature"

## [16] "volume"

conv_unit_options

## Sacceleration

## [1] "mm_per_sec2" "cm_per_sec2" "m_per_sec2" "km_per_sec2"

## [5] "grav" "inch_per_sec2" "ft_per_sec2" "mi_per_sec2"

## [9] "kph_per_sec" "mph_per_sec"

##

## Sangle

## [1] "degree" "radian" "grad" "arcmin" "arcsec" "turn"

##

## Sarea

##  [1] "nm2" "um2" "mm2" em2" "m2" "hectare"
##  [7] "km2" "inch2" "in2" "fe2n "yd2" "acre"

## [13] "mi2" "naut_mi2"

##

## S$coordinate

## [1] "dec_deg" "deg_dec_min" "deg_min_sec" "dms" "DMS"

##

## Scount

## [1] "fmol"™ "pmol" "nmol" "umol" "mmol" "mol"

##t

## Sduration

## [1] "nsec" "usec" "msec" "sec" "min" "hr"
## [7] "hour" "day" "wk" "week" "mon" "yr"
## [13] "year" "dec" "decade" "cen" "century" "mil"
## [19] "millenium" "Ma"

#i#t

## $Senergy

## [1] "J" "kJ" "erg" "cal" "Cal" "Wsec" "kWh" "Mwh" "BTU"

##

## $file_size

## [1] "byte" "KB" "kB" ""MB" "GB" "TB" "pPB" "bit" "Kbit" "kbit"

## [11] "Mbit" "Gbit" "Tbit" "Pbit"
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##

## $flow

## [1] "ml_per_sec" "ml_per_min" "ml_per_hr" "1l_per_sec" "l_per_min"
## [6] "LPM" "1_per_hr" "m3_per_sec" "m3_per_min" "m3_per_hr"
## [11] "Sv" "gal_per_sec" "gal_per_min" "GPM" "gal_per_hr"
## [16] "ft3_per_sec" "ft3_per_min" "ft3_per_hr"

##

## $length

## [1] "angstrom" "nm" "um" ""mm" "cm"

## [6] "dm" "m" "km" "inch" "

## [11] "foot" "feet" "yd" "yard" "fathom"

## [16] "mi" "mile" "naut_mi" "au" "light_yr"

## [21] "light_year" "parsec" "point"

#i#t

## $mass

## [1] "Da" "fg" "pg" "ng" "ug"

##  [6] "mg" "g" "kg" "Mg" "Gg"

## [11] "Tg" "pg" "carat" "metric_ton" "oz"

## [16] "lbs" "short_ton" "long_ton" "stone"

##

## Spower

##  [1] "uw" "mw" W' kw" MW"

## [6] "GW" "erg_per_sec" "cal_per_sec" "cal_per_hr" "Cal_per_sec"
## [11] "Cal_per_hr" "BTU_per_sec" "BTU_per_hr" "hp"

#it

## S$pressure

## [1] "uatm" "atm" "Pa" "hpa" "kPa" "torr" "mmHg" "dinHg" "cmH20"
## [10] "4nH20" "mbar" "bar" "dbar" "psi" "pSI"

##

## S$speed

## [1] "mm_per_sec" "cm_per_sec" "m_per_sec" "km_per_sec" "inch_per_sec"
## [6] "ft_per_sec" "kph" "km_per_hr" "mph" "mi_per_hr"
## [11] "km_per_day" "mi_per_day" "knot" "mach" "light"
##

## Stemperature

## [1] "C" "F" "K" "R"

##

## S$Svolume

## [1] "ul" "ml" "di" " "cm3" "dm3"

## [7] "m3" "km3" "us_tsp" "us_tbsp" "us_oz" "us_cup"
## [13] "us_pint" "us_quart" "us_gal" "inch3" "ft3" "mi3"

## [19] "dimp_tsp" "imp_tbsp" "dimp_oz" "imp_cup" "imp_pint" "dimp_quart"
## [25] "dimp_gal"

conv_unit_options$length

## [1] "angstrom" "nm" "um" "mm" "em"

## [6] "dm" "m" "km" "inch" "

## [11] "foot" "feet" "yd" "yard" "fathom"

## [16] "mi" "mile" "naut_mi" "au" "light_yr"

## [21] "light_year" "parsec" "point"
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conv_unit_options$angle

## [1] "degree" "radian" "grad" "arcmin" "arcsec" "turn"

conv_unit_options$area

## [l] Ilnm2|| llumzll llmm2I|
## [7] "km2" "inch2" "in2"
## [13] "mi2" "naut_mi2"

conv_unit_options$volume

## l:l:l Ilu'Lll Ilm'LIl lldlll

## [7] "m3" "km3" "US_tSp"
## [13] "us_pint" "us_quart" "us_gal"
## [19] "dimp_tsp" "imp_tbsp" "dimp_oz"

## [25] "dimp_gal"

llcmzll llmzll
nfgon llyd2||

lI'LlI
"us_tbsp"
"inch3"

"imp_cup"

2.12.6 Convert distance measurements

43

"hectare"

"acre"
"Cm3" lldm3ll
"US_OZ" "US_CUp"
llftsll llm-i3ll
"imp_pint" "dimp_quart"

In geomatics, the SI base length unit is called “meter”. The conv_unit function are used to convert
measurement units between the obtained distances in mm, cm, dm, m, km and inch.

conv_unit(2.54, "cm", "inch")

## [1] 1

conv_unit(1l, "m'", "mm'")

## [1] 1000

conv_unit(1l, "m", "cm")

## [1] 100
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conv_unit(1l, "m'", "dm'")

## [1] 10
conv_unit(1l, "m", "m")
## [1] 1
conv_unit(1l, "m", "km")

## [1] 0.001

2.12.7 Convert angle measurements

Considering plane angular measurements, the measurement units defined by the SI are: radian,
degree, and grade (gon). For the sexagesimal degree unit, the degrees, minutes and seconds are
described with symbols placed in the upper right part of the corresponding number, °, ’, ", respec-
tively. To perform calculations with angles, it may be necessary to transform degrees, minutes

and seconds in decimal degrees and vice versa using the conv_unit function.

conv_unit(c("10 20 30"), "deg_min_sec", "dec_deg")

## [1] "10.3416666666667"

conv_unit(c("10.53 20.01 30.06"), "deg_min_sec", "dec_deg")

## [1] "10.87185"

conv_unit(c("10 35.40","20 38.763"), '"deg_dec_min", "deg_min_sec")

## [1] "10 35 24" "20 38 45.7799999999988"

2.12.8 Convert units to products or rates

The conversion of units into products or rates can be performed with the conv_dim function. For

example, it is possible to determine how many minutes it took to travel 100 m at 2 m s™.

1
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conv_dim(x = 100, x_unit = "m'", trans = 2, trans_unit = "m_per_sec",
y_unit = "min")

In this case, 0.833 minutes are required.

2.12.9 Surface measurements

For surface measurement, some additional units of centiare, are, and hectare are shown in Table
2.4 (Silva and Segantine, 2015).

TABLE 2.4: Units of surface measurement.

Unit Acronym Description
1 centiare ca 1m? (1x1m)
1 are a 100 m? (10 x 10 m)

1 hectare ha 10000 m? (100 x 100 m)

In the conversion of 6000 m? to ha, it is enough to divide the value in square meters per 10000,
obtaining 0.6 ha.

# Conversion from 6000 square meters (m2) to ha

ha<-10000
m2<-6000

#1lha---10000m"2
# x-——-6000m"2

x<-m2/ha
X

## [1] 0.6

In Brazil, the hectare unit is considered official, but other old surface units, as the alqueire, can
be used regionally in the country (Table 2.5) (Borges, 2013; Silva and Segantine, 2015).

TABLE 2.5: Examples of regional surface measures used in Brazil.

Regional Measure Area (ha)

Alqueire Paulista 2.4200
Alqueirao 19.3600
Alqueire Baiano 9.6800
Alqueire Mineiro 4.8400
Alqueire Goiano 4.8400
Alqueire do Norte — 2.7225

The alqueire also designates units of measure of area of land that could be sown with an alqueire
of seed.
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2.12.10 Scale

After taking measurements on the ground and calculating the coordinates of the vertices, it may
be necessary to physically represent the measurements on paper. The denominator of the scale (E)
is the constant relationship between the distances measured on the terrain (D) and its distance
on the representing paper (d), as a proportion:

FE =

D
- (2.1)

The scale can be numeric 1:500, graphical (bar scale on the map) and nominal (written in full).

The most common scales used in topography for surveying environments are shown in Table 2.6
(Borges, 2013).

TABLE 2.6: Common scales used in planimetric surveys.

Environment Scale
Urban lots 1:100 to 1:200
Urban subdivisions and streets 1:1000
Rural properties 1:1000 to 1:5000
Large regions >1:5000

In altimetry, scales are generally different to represent horizontal and vertical values in order to
highlight level differences, so the vertical scale can be larger than the horizontal, for example,
using 1:1000 horizontal scale and 1:100 vertical scale (Borges, 2013).

2.12.11 Graphic resolution

Graphic resolution is the smallest magnitude represented in a drawing by scale. The graphical
error is the smallest possible graphic magnitude of viewing with the naked eye in magnitude of 0.2
mm or 0.0002 m. With the denominator of the drawing scale (E), you can calculate the smallest

possible dimension to be represented (d) (Silva and Segantine, 2015):

d = 0.0002E (2.2)

2.12.12 Evaluate information about R packages used

The R package sf (Pebesma et al., 2021) is installed and enabled to evaluate information about
R packages used in the preparation of the book.

The install.packages function is used to install the sf package in the R console.

install.packages("sf")

The library function is used to enable the sf package in the R console.
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library(sf)

The print function is used to evaluate information about the operating system and version of R
used.

print(version)

## —

## platform x86_64-w64-mingw32
## arch X86_64

## os mingw32

## system x86_64, mingw32

## status

## major 3

## minor 5.2

## year 2018

## month 12

## day 20

## svn rev 75870

## language R

## version.string R version 3.5.2 (2018-12-20)
## nickname Eggshell Igloo

The print function allows to obtain the windows version used, the base R packages, and other R
packages installed on the computer.

print(sessionInfo())

## R version 3.5.2 (2018-12-20)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows 10 x64 (build 19041)

##

## Matrix products: default

##

## locale:

## [1] LC_COLLATE=Portuguese_Brazil.1252 LC_CTYPE=Portuguese_Brazil.1252
## [3] LC_MONETARY=Portuguese_Brazil.1252 LC_NUMERIC=C
## [5] LC_TIME=Portuguese_Brazil.1252

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base
##

## other attached packages:

## [1] measurements_1.4.0 gridExtra_2.3 raster_3.1-5

## [4] readr_2.0.1 tidyr_1.1.3 ggplot2_3.3.5

## [7] rgdal_1.4-8 sp_l.4-1 rnaturalearth_0.1.0

## [10] COVID19_2.3.2 dplyr_1.0.7 tmap_3.3-2

## [13] sf_1.0-2
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##

## loaded via a namespace (and not attached):

## [1] bit64_0.9-7 vroom_1.5.4 viridisLite_0.3.0 shiny_1.7.0

## [5] assertthat_0.2.1 yaml_2.2.0 pillar_1.6.2 lattice_0.20-41
## [9] glue_1.4.2 digest_0.6.25 RColorBrewer_1.1-2 promises_1.1.0
## [13] colorspace_1.4-1 htmltools_0.5.2 httpuv_1.6.1 XML_3.98-1.20
## [17] pkgconfig_2.0.3 stars_0.5-3 bookdown_0.23.4 purrr_0.3.4

## [21] xtable_1.8-4 scales_1.0.0 later_1.0.0 tzdb_0.1.2

## [25] tibble_3.1.4 generics_0.1.0 ellipsis_0.3.2 withr_2.4.2

## [29] leafsync_0.1.0 cli_3.0.1 magrittr_2.0.1 crayon_l.4.1

## [33] mime_0.7 evaluate_0.14 fansi_0.4.0 lwgeom_0.1-7

## [37] class_7.3-14 tools_3.5.2 hms_1.1.0 lifecycle_1.0.0
## [41] stringr_1.4.0 munsell_0.5.0 compiler_3.5.2 elo71_1.7-3

## [45] rlang_0.4.11 classInt_0.4-3 units_0.6-4 grid_3.5.2

## [49] tmaptools_3.1-1 dichromat_2.0-0 rstudioapi_0.13 htmlwidgets_1.5.3
## [53] crosstalk_1.0.0 leafem_0.1.6 base64enc_0.1-3 rmarkdown_2.9
## [57] gtable_0.3.0 codetools_0.2-15 abind_1.4-5 DBI_1.1.1

## [61] R6_2.5.1 knitr_1.33 bit_1.1-15.2 fastmap_1.1.0
## [65] utf8_1.1.4 KernSmooth_2.23-15 stringi_1.4.3 parallel_3.5.2
## [69] Rcpp_1.0.4.6 vctrs_0.3.8 png_0.1-7 leaflet_2.0.4.1

## [73] tidyselect_1.1.1 xfun_0.24

The print function is used to evaluate R package installation directory on the computer.

print(.libPaths())

## [1] "C:/Users/UFLA/OneDrive/Documentos/R/win-library/3.5"
## [2] "C:/Program Files/R/R-3.5.2/1library"

The packageVersion function is used to evaluate specific R package version installed on the com-
puter. In this case, the sf version is obtained.

packageVersion('"sf'")

## [1] '1.0.2'

2.12.13 Evaluate the existence of an R package with keywords

The search for information about an R package can be carried out based on keywords on the
subject of interest through the sos package (Graves et al., 2020). As an example, the search for
keywords is performed to evaluate packages available for application in different themes.

The sos package is installed and enabled as previously described, on the R.

install.packages("sos")
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library(sos)

The findFn function is used to search for existing packages on a thematic subject of interest, in
this case, with the keywords: latitude, longitude and cartesian.

findFn("latitude longitude cartesian")

In this research, 48 functions related to the keywords are found, in different packages, in addition
to a description and a link to access more detailed information on the Internet.

2.13 Solved Exercises
2.13.1 Can geomatics and topography be considered synonymous?

A: Both terms can be used, but the term geomatics is more comprehensive than topography
because it encompasses the use of geocomputation techniques and remote sensing imagery in
topography.

2.13.2 Recent technological developments in measurements and topographic
surveys have determined the disuse of the term “topography”, which
has been replaced by geomatics?

A: The terms “topography” and “geomatics” are synonymous; however, geomatics arose due to
the change of technology and methodology of surveys with the support of other sciences, such as
electronics, informatics, geophysics, engineering, meteorology and astromomia, but has not yet
replaced but complemented translating a differentiated emphasis from traditional topography.

2.13.3 What determined the emergence of the first surveyors who were called
string stretchers in Egypt around 1400 BC?

A: Herodotus divided Egypt into tax collection plots, but the floods of the Nile River determined
the need for a new demarcation of the land, emerging the need for surveyors.

2.13.4 How did Eratosthenes determine the dimensions of the Earth using
solar measurements from different locations, around 200 BC?

A: Eratosthenes measured the angle formed between the shadow of the sun in a bulkhead in
Alexandria and Siene, in order to determine the length of the arc between the two cities, which
was later extended to the entire Earth’s circumference.
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2.13.5 Why do geodetic surveys have a higher order of accuracy than plane
surveys?

A: Geodetic surveys consider the Earth’s curvature in calculations. In plane surveys, the horizontal
land surface was considered plane, resulting in errors for surveys of large areas (>8 km). When
considering the Earth’s curvature, geodetic surveys can be applied to both large and small areas.

2.13.6 How can a geodetic control network be used to establish vertical and
horizontal reference control for other surveys?

A: Control surveys are generally used to correct data collected with GNSS instruments from
topographic landmarks materialized in the terrain, with coordinates of longitude and latitude,
and altitude known from measurements made with high standard accuracy and precision.

2.13.7 Have the safety standards in topographic surveys in Brazil been specif-
ically applied to topography, and do they have legal protection for the
injured professional?

A: In Brazil, security in topographic surveys is regulated by Regulatory Norms, such as NR 18
which establishes guidelines for the implementation of control measures and preventive safety
systems in the processes (MTE, 2015), largely applicable to work environment in the construction
industry. In these rules, there is no approach related to topography, which by its nature also does
not fit into rural work, being unprotected from legal protection if considered in terms of specific
legislation.

2.13.8 1Is the search for new maps and product updates of already existing
planets, moons, stars and other extraterrestrial objects a future chal-
lenge in topography?

A: Topography is in the middle of a revolution where the processes of measuring, recording,
processing, storing, retrieving and sharing data take place. Therefore, technological advances in
society contribute to wide demand for obtaining data with a high standard of accuracy and the
processing of information, in order to update and generate mapping products in different areas
of science.

2.13.9 The length of a fence on the ground has a value of 5 cm measured on
a map on the 1:1000 scale. Determine the fence length.

A: The estimated fence length on the ground is 50 m.

#Data

E<-1000

d<-0.05

#Fence distance on the ground
D<-E*d

D

## [1] 50
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2.13.10 A terrain measurement length of 500 m is mapped on the 1:2000 scale.
Determine the length of the terrain measurement on the map.

A: The length of the terrain measurement on the map is 0.25 m or 25 cm.

#Data

E<-2000

D<-500

#Distance drawn on paper
d<-D/E

d

## [1] 0.25

2.13.11 Represent the length of 324 m on a 1:500 scale in the drawing.

A: The length of the terrain measurement in the drawing is 0.648 m or 64.8 cm.

#Data

E<-500

D<-324

#Distance drawn on paper
d<-D/E

d

## [1] 0.648

2.13.12 In a mapping, vertices are found spaced 820 m apart on the ground
and 37 cm in the drawing. Determine the scale.

A: The scale is 1:2216.2.

#Data

d<-0.37

D<-820

#Distance drawn on paper
E<-D/d

E

## [1] 2216.216

2.13.13 Determine the smallest possible dimensions of the terrain representa-
tion on the scales 1:100, 1:1000 and 1:10000 considering the graphical
error 0.0002.

A: Considering the graphical error 0.0002, the smallest possible dimensions of the terrain repre-
sentation on the scales 1:100, 1:1000 and 1:10000 are 2, 20 and 200 cm, respectively.
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#Data
E1<-100
E2<-1000
E3<-10000
e<-0.0002
#Distances
dl<-exEl
di

## [1] 0.02

d2<-exE2
d2

## [1] 0.2

d3<-exE3
d3

## [1] 2

2.14 Homework

2 Introduction to Measurement Units

Choose four solved exercises presented by the teacher and improve the answer with more details
on the subject. Present the references used in the consultation.

2.15 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the

chapter as shown in Table 2.7.
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TABLE 2.7: Slide shows and video presentations on geomatics and measurement units.

Guide Address for Access

1 Slides on Introduction to Geomatics and Measurement units®
2 Units of Measure: Unit Conversion/Dimensional Analysis*
3 Units of Measure: Scientific Measurements & SI System®

4 What is geomatics?’

5 Future Challenges in Geomatics: Farewell to Asteroid Bennu”

2.16 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 2.8).

TABLE 2.8: Practical and research activities used or adapted by students using geomatics and
units of measure.

Activity Description
1 Identify and select a problem to be studied with geomatics and R
2 List the variables of interest for analysis in geomatics and what units of
measurement will be used
3 Identify an area that can be measured in the field to perform measurement

evaluations with geomatics instruments

2.17 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Introduction to Measurement Units”, on a single A4 page in
order to show the student’s abilities to summarize a subject presenting key points considered of
greater importance today.

3http://www.sergeo.deg.ufla.br/geomatica/book/cz/presentation.html#/
4https://youtu.be/jTRILy5x6q4
5https://youtu.be/oAtDAoquxw
6https://youtu.be/pHrluDXthM
7https://youtu.be/Rk]oGBbemA
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Theory of Measurement Errors

3.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e How to distinguish direct and indirect measurements.

e« What possible types of errors can be observed in topographic measurements?

e How to determine the source and magnitudes of error propagation in geomatics.

¢ How to select instruments and procedures to minimize errors within acceptable limits in geo-
matics.

e How to evaluate the difference of mistakes, systematic and random errors.

o How is probability theory used in geomatics?

o What are the advantages and disadvantages of measurements with electronic equipment?

o« How to apply basic statistics to a series of data obtained by survey.

3.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Know the types of direct and indirect measurements.

o Analyze the possible types of errors in direct measurements, including source, magnitude and
form of error propagation.

o Evaluate systematic mistakes and errors knowing accuracy, precision and resolution according
to an adopted standard.

o Briefly know the theory of probability and its laws, the definition of the most probable value
and determination of residual.

o Know the advantages and disadvantages of measurements with electronic equipment.

e Describe a series of data obtained by surveying with electronic measurement using basic statis-
tics.

3.3 Introduction

Performing measurements has been the main interest of a surveyor. In geomatics, the measure-
ment of quantities with exact or true value cannot be determined, such as distances, heights,
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56 8 Theory of Measurement Errors

volumes, directions and weight. The more accurate the equipment used, the closer the result of a
measurement to the estimated exact value, but it will never be possible to determine the actual
value of the measure (McCormac et al., 2012).

After the measurements, subsequent calculations and analyses are performed, generating satisfac-
tory results. To perform satisfactory observations, it is necessary to combine human skill and good
equipment. In addition, it became necessary to analyze the different types of existing errors, the
expected magnitudes and the form of propagation, in order to select instruments and procedures
implemented for error reduction according to acceptable limits, considering a reference standard.
Sophisticated computers and programs are typically used to plan projects and investigate the
distribution of errors after obtaining the results of the survey carried out (Figure 3.1) (Alves and
Silva, 2016).

Measurement Decision

: ® Mapping
® Magnitude » ® Instruments »[ pping ]

. o Ty @ Report
@ Propagation ® Procedures ]
. re e Within
Environment Variables
required standard?
eLErrors uired stands
(No )] (Wes ) »
Modifications, Map
adaptations used

FIGURE 3.1: Decision-making process based on the evaluation of measurement errors.

3.4 Direct and Indirect Observations

Observations can be made directly or indirectly in geomatics. Considering direct measurements,
a measurement instrument is applied and adjusted directly over the measured location. As an
example, we can mention the use of a measuring tape over the ground when carrying out the
measurement. In indirect measurement, it is not possible to apply a measurement instrument
directly over the location. The answer is obtained by inference, based on the relationship of other
observed variables with the variable of interest. With this, it is possible to verify the distance of
a line between two points separated by obstacles or at great distances by trigonometric functions
based on reading a grade rod performed through the telescope of a theodolite, as well as by an
active electromagnetic sensor, which emitted a signal from the origin and received another signal
reflected from a prism at the desired target, performing the indirect distance measurement (Alves
and Silva, 2016). Direct and indirect measurements showed errors. The way in which measurement
errors are combined to generate error responses is termed “error propagation” (Ghilani and Wolf,
1989).
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3.5 Measurement Error Sources

By definition, an error is the difference between an observed value of a quantitative measure and
its true value, or (Ghilani and Wolf, 1989)

E=X-X (3.1)

where E is the error of an observation, X, the observed value, and X, the true value.

When performing topographic measurements, it can be unconditionally stated that (Ghilani and
Wolf, 1989):

e No observation is accurate;
o All observations contain errors;
e The exact error present is always unknown.

The accuracy of observations depends on the scale division size, the configuration of the equipment
used and human limitations in estimating values less than one-tenth of the scale division. Even
for the best equipment developed, observations closer to their true value will never be accurate
(Ghilani and Wolf, 1989).

3.6 Types of Errors

Measurement errors can be subdivided into (Schofield et al., 2007):

o Mistakes;
o Systematic errors;
e Random errors.

Mistakes are defined as errors caused by problems of lack of attention, carelessness, fatigue, lack
of communication or lack of knowledge. Other examples are: mistaken registration of numbers;
reading from a counterclockwise angle, while the reading should be clockwise; aiming at the wrong
target and recording the wrong distance. Coarse mistakes must be detected carefully by checking
survey data. Small mistakes are difficult to be detected, as they mix with measurement errors
(Alves and Silva, 2016).

Systematic errors are known as biases or trends, resulting from factors that are part of the
measurement system and included environment, instrument and observer. If the conditions of
the measurement system remained constant, systematic errors also remained constant. If the
conditions are modified, the magnitude of the systematic error is also modified. As systematic
errors tend to accumulate, they are also named cumulative errors (Ghilani and Wolf, 1989). If
the conditions that determined the occurrence of systematic errors are known, a correction can
be calculated and applied to the observed values (Alves and Silva, 2016).

Random errors remained at the measured values after eliminating mistakes and systematic errors.
These errors are caused by factors beyond the observer’s control and obey the laws of probability.
Random errors are also named accidental, as they are present in the survey measurements. The
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magnitudes and algebraic signs of random errors occurred at random. Thus, it is not possible
to calculate or eliminate random errors; however, it is possible to estimate them using least
squares adjustment procedures. Random errors are also named compensated errors, since they
were partially eliminated from a series of observations (Alves and Silva, 2016).

3.7 Eliminating Mistakes and Systematic Errors

One of the best ways to identify mistakes can be done by comparing some measurements of the
same magnitude. The elimination of error of the surveying can be observed by the outlier of the
measurement dataset. Systematic errors can be calculated and corrected from knowledge about
the source of systematic error (Alves and Silva, 2016).

3.8 Accuracy, Precision and Resolution

Discrepancy is defined as the difference between two observed values of the same measurement. A
small discrepancy indicated that there is probably no mistake and the random errors are small.
However, small discrepancies do not prevent systematic errors from occurring (Alves and Silva,
2016).

The difference between the observations of the same measurement can be classified according to
the accuracy and precision of the measurement. Precision refers to the degree of refinement or
consistency of a group of observations determined based on the size of discrepancy. If multiple
observations of the same measurement are made, resulting in a small discrepancy, there is high
precision. The degree of precision is dependent on the sensitivity of the equipment and the skill
of the operator. Precision is obtained based on the reliability of the measurement process, not the
measurement. The precision of a series of observations is represented by the standard deviation
from the mean (Alves and Silva, 2016).

Accuracy refers to the proximity to the true value of a measurement performed. Accuracy is
related to the reliability of the measurement obtained, and not to the measurement process used.
The accuracy of a series of observations is defined by the standard deviation from the real value.
The difference between accuracy and precision is illustrated based on a sniper’s target. If all the
shots are close and grouped, there is satisfactory precision in the operation. If the shots are made
in the center of the target, there is satisfactory accuracy in the operation (Ghilani and Wolf, 1989)
(Figure 3.2).

Another important concept to define the spatial quality of the survey is the spatial resolution.
Spatial resolution is the smallest part identified when a measurement is made. The resolution can
be better understood with the example of a target divided into different unit intervals. In this
case, there will be greater resolution on the target with a greater number of subdivisions (Figure
3.3).
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FIGURE 3.2: Accuracy and precision of an archer when the objective is to hit the center of the
target in which good precision and good accuracy (left), bad precision and bad accuracy (center),
and good precision and bad accuracy (right) are obtained.

FIGURE 3.3: Resolution of images used in surveying with different pixel sizes. In the image on
the left there is a greater number of subdivisions and higher resolution.

3.9 Probability Theory

Events that occur at random or randomly can be characterized by probability theory. A proba-

bility can be defined by the rate relative to the number of times a result can occur in relation to

the total number of possibilities. In general, if a m result does not occur n times, the probability

of occurrence, p, of this result is (Ghilani and Wolf, 1989; Alves and Silva, 2016):

m

= 3.2

b (m+n) (32)

The probability of occurrence of any result should vary between 0 and 1, with 0 being the indica-

tion of impossibility and 1 being the absolute certainty. The sum of the probabilities of a result
occurring or failing must be 1.
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Considering that perfect measurements cannot be made, random errors will occur in the observa-
tions made. The magnitude and frequency of occurrence of these errors can be represented within
the laws of probability. Disregarding the mistakes and systematic errors that can occur in the
database, only random errors are obtained from the measurement results by means of statistical
indices that determine the measurement uncertainties.

3.10 Most Probable Value

Although the true value of a measurement is never known, the most probable value can be quan-
tified after making repeated observations. Repetitions are measures taken in excess to determine
an average measurement, based on the most probable value, or the simple arithmetic mean of the
measurements (Ghilani and Wolf, 1989; Alves and Silva, 2016):

w=y M (3.3)

i=1 n

where M is the most probable value, that is, the sum of the individual measurements, M in
relation to the total observations, n.

3.11 Residuals

After determining the most probable value of a measurement, it is possible to calculate the
residuals. A residual is simply the difference between the most probable value of a measurement
and any other measured value in the measurement (Figure 3.4) (Ghilani and Wolf, 1989; Alves
and Silva, 2016):

v=M-M (3.4)

where v is the residual of any M observation and M the most likely value of the measurement.
Residuals are theoretically identical to the errors, except that residuals can be calculated and
errors cannot, since the true values are never known. Thus, the term residual is used instead of
error, when determining the adjustment of survey data.

3.12 Random Errors

Mistakes and systematic errors must be detected and removed before the analysis of random
errors in a database. The histogram is defined as a barplot representing the size of observations
in relation to the frequency of occurrence. This procedure enabled to obtain a visual impression
of the distribution pattern of the observations or residuals (Figure 3.5) (Ghilani and Wolf, 1989;
Alves and Silva, 2016).
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3.12.1 General probability laws

Some general probability laws are established in the theory of errors (Ghilani and Wolf, 1989):

¢ Small-value residuals occur more frequently than large-value residuals, i.e., small residuals are
more probable;

o Large residuals are less frequent and therefore less probable. In errors with normal distribution,
typically larger values are more mistakes than random errors;

¢ Positive and negative residuals occur with equal frequency and with the same probability, that
is, the most probable value of a group of repetitions of measurements performed with the same
equipment and procedure is the mean.

3.12.2 Precision measurements

The dispersion magnitude is an indication of the relative dispersion of observations, indicated by
the standard deviation and variance (Schofield et al., 2007):

Z?:l v?

o=+ n—1

(3.5)

where o is the standard deviation of a group of observations of the same measurement, v, the
residual of an individual observation, 2:;1 v?, the sum of squares of the individual residuals, and,

n, the number of observations. The variance is equal to o2.

A graph of the normal distribution curve enabled to observe multiple values of standard deviation
correspondence with the percentage of the total area below the normal distribution curve. The
value of one standard deviation corresponds to ~ 68% of the area below the normal distribution
curve (Figure 3.6) (Ghilani and Wolf, 1989).

Based on the value of the standard deviation, it is possible to establish limits within which the
occurrence of the observations is expected. For measurement residuals with normal distribution,
the probability of an error of any percentage of probability is determined by (Ghilani and Wolf,
1989):

E =Co (3.6)

P P
where E, is a certain percentage of error and C), is the corresponding numerical factor obtained
by the error ratio and the percentage of the area below the normal distribution curve.

Thus, the equations for errors of 50, 68, 90 and 95% probability of occurrence are (Ghilani and
Wolf, 1989):

Fyy = +0.67450 (3.7)
By = +1o (3.8)
Egy = +1.64490 (3.9)

Eqs = +£1.95990 (3.10)
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bution curve.



64 8 Theory of Measurement Errors

The 50% error is named “probable error”. In this case, limits are established in which the observa-
tions occur in 50% of the repetitions, that is, they presented the same probability of falling within
or outside that limit. The 90 and 95% errors are normally used to specify the accuracy required
in survey designs. The 95% error is named “2 sigma (20) error”. The 3 sigma (30) error is widely
used as a criterion for rejecting individual observations of a dataset, considered as a mistake.

3.13 Error Propagation

Since all observations contain errors, any measurements made can probably contain errors. The
process of evaluating errors in quantities calculated based on the observed values is named “er-
ror propagation”. The general law of propagation of variances can be used to characterize the
propagation of errors by mathematical equations. In topographic surveys, this equation can be
simplified, as the observations are mathematically independent (Alves and Silva, 2016).

3.13.1 Sum error

Whereas the sum of independent observations a, b, ¢, ..., n is equal to Z, the equation for deter-
mining the Z measure is (Ghilani and Wolf, 1989):

Z =a,b,c,...,n (3.11)

The error propagated in relation to the sum of the measurements containing different random
errors is the error of a sum (£

sum)

Eum :i\/E§+E§+E§+...+Eg (3.12)

3.13.2 Series error

Similar series of measures, such as angles within a closed polygon or distances measured under
the same condition, are read so that each observation has the same error regarding a measure,
but with a series of measures. In this case, random errors tend to accumulate in proportion to
the square root of the number of measurements. This type of error can only be considered if all
measurements are made with equal precision and reliability (McCormac et al., 2012).

The total error of the sum of all these measures in series is named error of a series (E,,,;cs)

(Ghilani and Wolf, 1989):

Buupies =2\ B} + B3 + B + ..+ E} = +VnE? = +Evn (3.13)
where I}, E,, ..., I, represent the error of each observation and, n, the number of observations.

3.13.3 Error of a product

The equation for propagating the error of a product (Epmd) between the AB observations are
(Ghilani and Wolf, 1989):
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E, .4 = £\ A2E} + B2E3 (3.14)

where F', and Ep are the errors of A and B, respectively.

The propagation error of a product can be used in areas with sides A and B observed from a
rectangular plot of land with the errors E,4 and Ejp, respectively. The product of the AB sides
defines the parcel area.

3.13.4 Error of a mean

The error of a mean (E,,) calculation enabled to determine the error of a series of observations
with the same error for each observation (Ghilani and Wolf, 1989):

E,.. Eyn E
E — SE’I”LES: — _ 3.15
=TS = s = (3.15)

The error of a mean can be applied to specific probability percentages so that errors of 68%
(Eggm)s 90% (Fggy) and 95% (Eqs,,) of an average were (Ghilani and Wolf, 1989):

g

E68m =0y = i\/ﬁ = 7’L o 1 (316)
E S ow
By = 4290 — 416449, ==L 3.17
dom = s = & = (3.17)
E "2
Fos = +—2 = 41.9599 2V (3.18)

Vn n(n—1)

3.14 Electronic Data Acquisition

Data collectors can be interoperable with modern survey instruments, automatically collecting
and storing data in files compatible with computers (Figure 3.7). Data transfer can be carried out
using memory cards, cables and Bluetooth. The biggest advantages of automatic data storage are
(Alves and Silva, 2016):

o Avoid mistakes when reading and/or recording field observations manually;
o Reduce the time for processing, viewing and filing field notes in the office;
o Increase the amount of information stored in digital data collectors.

The disadvantages of automatic data storage are (Alves and Silva, 2016):

e The need for a qualified operator to operate the instrument;
o Data may be accidentally deleted;
e The need for batteries for the operation of digital data collectors.
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FIGURE 3.7: LT30 TM data collector, with 806 MHz processor, with the SurvCE program,
used to record and calculate surveying measurements with satellite positioning systems.

3.15 Computation

As a computation practice, a graph is performed in R in order to characterize the errors of
lo, 20 and 30 used in geomatics. Then, the occurrence of random errors is analyzed by means
of a topographic survey database with 100 repetitions of measurement of slope separating two
vertices with an electronic total station. Dataset normality is analyzed as well as the calculation
of summary statistics, residuals and probability errors of horizontal distance measurements.

3.15.1 Errors of 10, 20 and 30

The errors of 1o, 20 and 3o represent 68, 95 and 99.7% of the area under the normal frequency
distribution curve for measurement residuals. Based on this information, a graph is constructed
to illustrate this concept (Figure 3.8).
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plot(seq(-3.2,3.2,length=50) ,dnorm(seq(-3,3,length=50),0,1),type="1",xlab="",
ylab="",ylim=c(0,0.5))

segments(x0 = ¢(-3,3),y0 = ¢(-1,-1),x1 = ¢(-3,3),yl=c(1,1))

text(x=0,y=0.45,1labels = expression("99.7% of data considering 3" ~ sigma))

arrows (x0=c(-2,2),y0=c(0.45,0.45) ,x1=c(-3,3),y1=c(0.45,0.45))

segments(x0 = ¢(-2,2),y0 = ¢(-1,-1),x1 = ¢(-2,2),yl=c(0.4,0.4))

text(x=0,y=0.3,labels = expression("95% of data considering 2" ~ sigma))

arrows (x0=c(-1.5,1.5),y0=¢c(0.3,0.3),x1=c(-2,2),y1l=c(0.3,0.3))

segments(x0 = ¢(-1,1),y0 = ¢(-1,-1),x1 = ¢(-1,1),yl=c(0.25,0.25))

text(x=0,y=0.15,labels = expression("68% of data considering 1" x sigma),

cex=0.9)
uw
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FIGURE 3.8: Using R codes to illustrate the concept of sigma errors.

A database with 100 repetitions of slant distance measurement with an electronic total station
is used to analyze the occurrence of random errors assuming that there are no mistakes and
systematic errors. The database is related to the x vector, including the distance values.

3.15.2 Import database with horizontal distance measurements through elec-
tronic total station

Data with 100 values of horizontal distance measurements obtained with the same methodology
through Ruide total electronic station are stored in x.
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x <- c(166

166.

166

166.
166.
166.
166.
166.
166.
166.
166.
166.

166

166.
166.
166.
166.
166.
166.
166.
166.
166.
166.
166.
166.

.9200308039,166.
9190421871,166.
.9171881078,166.
9191685993,166.
9111365241,166.
9220112443,166.
9229998552,166.
9131137460,166.
9082938711,166.
9200340225,166.
9190454115,166.
9141023569,166.
.9102710944,166.
9152141527,166.
9121251351,166.
9141023569,166.
9231230459,166.
9142255410,166.
9150909678,166.
9122483177,166.
9121251351,166.
9180568006,166.
9249770771,166.
9112597061,166.
9162027644,166.

9170649536,166.
9180535704,166.
9190421871,166.
9171913760,166.
9091593023,166.
9220112443,166.
9141023569,166.
9132369294,166.
9160795788,166.
9141023569,166.
9160795788,166.
9150909678,166.
9150909678,166.
9191685993,166.
9160795788,166.
9122483177,166.
9150909678,166.
9152141527,166.
9121251351,166.
9122483177,166.
9112597061,166.
9190454115,166.
9229998552,166.
9081706914,166.
9190454115,166.

9190421871,166.
9150877201,166.
9170649536,166.
9160795788 ,166.
9111365241,166.
9141023569,166.
9180568006 ,166.
9112597061,166.
9142255410,166.
9150909678 ,166.
9141023569,166.
9190454115,166.
9142255410,166.
9162027644 ,166.
9131137460,166.
9111365241,166.
9142255410,166.
9131137460,166.
9141023569,166.
9141023569,166.
9121251351,166.
9171913760,166.
9190454115,166.
9162027644,166.
9191685993, 166.

8 Theory of Measurement Errors

9180535704,
9200308039,
9103942717,
9152141527,
9131137460,
9160795788,
9160795788,
9091593023,
9150909678,
9229998552,
9141023569,
9101479132,
9131137460,
9201572110,
9150909678,
9191685993,
9132369294,
9142255410,
9122483177,
9141023569,
9111365241,
9190454115,
9102710944,
9121251351,
9102710944)

3.15.3 Evaluation of the frequency distribution of the distance measurement
data

To evaluate whether the distribution of the histogram presented a bell shape may be vague. A more
sensitive graphical technique for assessing data normality may be through a normal probability
plot. The normal probability plot is one of the observed values of the variable versus the normal
scores of the expected observations for a variable with the standard normal distribution. If the
variable is normally distributed, the normal probability plot should be approximately linear i.e.,
close to a straight line. In R, the functions gqnorm and qqline are used to perform the normal

probability or Q-Q plot (Figure 3.9) (Hartmann et al., 2018).

qqnorm(x, main =
qqline(x, col =

||)
3, lwd =

2)

3.15.4 Determination of the mean

The mean slant distance of 166.9154 m represents the most probable value by dividing the sum
of observations by the total number of observations.
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FIGURE 3.9: Using Q-Q plot to evaluate the normality of the slant distance measurement data.

mean <- mean(x)
mean

## [1] 166.9154

3.15.5 Median determination

The median of 166.9151 m represents the value of the data medium.

median <- median(x)
median

## [1] 166.9151

3.15.6 Mode determination

Mode is the most frequently occurring value in a dataset. Along with mean and median, mode is
a statistical measure of central tendency in the dataset. The mode is determined by a function
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followed by the application in the distance measurement database. The mode determined on slant
distance measurements is 166.9141 m, that is, the value with the most frequency occurrence in
the database.

mode <- function(x) {

ux <- unique(x)

ux[which.max (tabulate(match(x, ux)))]} #Function
mode <- mode(x) #Mode calculation
mode

## [1] 166.9141

3.15.7 Variance determination

Through variance, the dispersion value of the measurement dataset is characterized in relation to
the mean. The variance is 0.0000136435 m?.

variance <- var(x)
variance

## [1] 1.326435e-05

3.15.8 Determination of standard deviation

The standard deviation is a measure used to quantify the magnitude of variation or dispersion of
the data. The standard deviation of the analyzed dataset is 0.003642025 m.

sd <- sqrt(var(x))
#or

sd <- sd(x)

sd

## [1] 0.003642025

3.15.9 Histogram determination in the residuals

The histogram of residuals of the database is performed adopting the average value as the most
probable value for residual calculation of each distance measurement (Figure 3.10).

v<-x-mean
hist(v, breaks=10, col="grey90", xlab="Residual",
main="", xlim=c(-0.010, 0.010))
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FIGURE 3.10: Determination of the frequency distribution histogram of measurement data.

3.15.10 Adding a normal curve to the histogram of residuals

A distribution curve from normal to residual values is adjusted. In this case, the data distribution
pattern is close to the normal curve, with a bell-like shape (Figure 3.11).

hv<-hist(v, breaks=10, col="grey90", xlab="Residual (m)",
main="",
x1lim=c(-0.010, 0.010))
xvfit<-seq(min(v),max(v),length=40)
yvfit<-dnorm(xvfit,mean=mean(v),sd=sd(v))
yvfit <= yvfitxdiff(hvémids[1:2])*length(v)
lines(xvfit, yvfit, col="black", lwd=2)

It should be noted that other R packages, such as ggplot2, can be used to make histograms of
real and simulated data.

3.15.11 Determination of probability errors of horizontal distance measure-
ments

The errors at 50, 68, 90, 95 and 99.7% probability of horizontal distance measurements with the
Ruide electronic total station are determined by mathematical multiplication operations, obtain-
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FIGURE 3.11: Normal distribution curve fitting to the measurement residual values.

ing the values of +0.002456546, +0.003642025, +0.005990767, +£0.007138005 and, +0.01092607
m, respectively.

E50<-0.6745*sd (x)
E50

E68<-1*sd(x)

E68
E90<-1.6449*sd (x)
E90
E95<-1.9599%sd(x)
E95

E99<-3*sd (x)

E99

3.15.12 Determination of probability confidence intervals for horizontal dis-
tance measurements

The confidence intervals at 50, 68, 90, 95 and 99.7% probability for horizontal distance measure-
ments with the Ruide electronic total station are determined by sum and multiplication operations
of the errors previously obtained, obtaining interval values of 166.9129 to 166.9178 m, 166.9117
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to 166.9190 m, 166.9094 to 166.9214 m, 166.9082 to 166.9225 m, and 166.9044 to 166.9263 m,
respectively.

c(mean(x)- E50, mean(x)+ E50)
c(mean(x)- E68, mean(x)+ E68)
c(mean(x)- E90, mean(x)+ E90)
c(mean(x)- E95, mean(x)+ E95)
c(mean(x)- E99, mean(x)+ E99)

3.15.13 Determination of probability errors of the mean of horizontal distance
measurements

The errors of the mean of 50, 68, 90, 95 and 99.7% probability of horizontal distance measurements
with the Ruide electronic total station are determined with equations for each specified proba-
bility error of the mean, obtaining the values of 40.0002456546, +0.0003642025, 4+0.0005990767,
40.0007138005 and, 4+0.001092607 m, respectively.

E50m<-0.6745*sd (x) /sqrt(length(x))
E50m

E68m<-1xsd(x)/sqrt(length(x))

E68m
E9OmM<-1.6449*sd (x) /sqrt(length(x))
E9Om
E95m<-1.9599*sd (x) /sqrt(length(x))
E95m

E99m<-3*sd (x) /sqrt(length(x))

E99m

3.16 Solved Exercises

3.16.1 Suppose a line is observed in three sections, with the individual parts
equal to 241.25 4+0.02, 236.45 +0.03, and 261.32 +0.01 m. Determine the
total length of the line and the standard deviation.

A: Based on the error determination of a sum, the total length is 739.02 m and the standard
deviation is +0.03741 m.

length<-241.25+236.45+261.32
length
Esum<-sqrt(0.02/2+0.03/2+0.01/2)
Esum
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3.16.2 Consider that a distance of 100 m can be demarcated with an error of
+0.02 m using a specific survey methodology. Determine the demarca-
tion error of 25000 m using the same methodology.

A: Based on the error of a series, the error for demarcating 25000 m is +0.3162 m.

n<-25000/100

n
Eserie=0.02*sqrt(250)
Eserie

3.16.3 The distance of 15000 m is demarcated with an error of 4+0.10 m. De-
termine the measurement accuracy of 100 m in length ensuring that
the error will not exceed the permitted limit.

A: Whereas n=15, the average error for measuring 100 m is 40.025 m.

n<-1500/100

n
Em<-0.10/sqrt(15)
Em

3.16.4 The sides A and B of a plot measured with 95% probability error are
552.46 +0.053 and 605.08 +0.072 m, respectively. Calculate the parcel
area with the expected error of 95% probability.

A: The calculated area of the parcel is 334282.5 m?. The expected area error is +51.09 m?2.
Therefore, the area should be between 334231.4 and 334333.6 m?.

area<-552.46%605.08

area

Eprod<-sqrt(552.46"2 * 0.072"2 + 605.08"2 * 0.053/2)
Eprod

sup_int<-334282.5+51.09457

sup_int

inf_int<-334282.5-51.09457

inf_int

3.17 Homework

Choose two exercises presented by the teacher and solve the questions with different input values.
Compare the results obtained. If possible, use a real database measured in the field with an
available instrument.
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3.18 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter as shown in Table 3.1.

TABLE 3.1: Slide shows and video presentations on error theory.

Guide Address for Access
1 Slides on error theory in geomatics'
2 Error theory in surveying?
3 Errors and sigma®
4 Theory of errors*

3.19 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 3.2).

TABLE 3.2: Practical and research activities used or adapted by students using theory of
measurement errors for surveying applications.

Activity Description

1 Define if your research will be based on the improvement of an existing method by
analysis of survey errors or if it will refer to measurements made in the field, such
as the demarcation of a contour polygonal in the area of interest

2 Research how error theory can be used to analyze uncertainties in topographic
surveys according to previously established standards
3 Use a surveying instrument provided by the teacher and perform measurements

with repetitions to analyze results with error theory

3.20 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Theory of Measurement Errors with Geomatics and R”, on
a single A4 page in order to show the student’s abilities to summarize a subject presenting key
points considered of greater importance today.

1http://www.sergeo.deg.uﬂa.br/geomatica/book/c3/presentat1‘on.html#/
2https://youtu.be/VULaVSumGJk

3https://youtu.be/Lthn9szt4
4https://www.youtube.com/watch?v:SHYVzrkacO
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Angle and Direction Observations

4.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e How to differentiate between horizontal and vertical angles in geomatics.

o What angles are needed to determine direction in geomatics?

o How are the systems for the angular reading of mechanical optical instruments and electronic
angle measurement built?

¢ How is the magnetic field modeled on Earth?

e What are the variations of the magnetic field and how does it interfere with the use of the
compass?

e How are the R software and R packages used for recording and converting angles, perform-
ing mathematical operations and trigonometric calculations with angles, determining angles in
geometric figures and the angular variation of the Earth’s magnetic field?

4.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Understand the horizontal or vertical angles measured in geomatics as a function of the obser-
vation reference plane in different measurement units.

o Understand the horizontal angles necessary for determining bearing and azimuth from calcu-
lations involving internal angles, external angles, deflection angles, and the direction of a line,
recognizing possible measurement errors.

¢ Know an angular reading system for mechanical optical instruments and electronic angle mea-
surement.

e Understand how the magnetic field works, its variations and how it interferes with the use of
compass and the difference between magnetic and geodetic meridian.

e Use the R Program and the oce, LearnGeom and circular packages for converting different
angle systems, mathematical operations with angles, trigonometric calculations, determination
of angles in geometric figures, determination of the Earth’s magnetic field by model at different
times and graphical evaluation of the direction bearing quadrant.

DOI: 10.1201/9781003184263-4 7
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4.3 Introduction

Human beings oriented themselves by rudimentary methods using angle measurements. In 4000
BC, Egyptians and Arabs tried to work out a calendar by observing the sun and an angle corre-
sponding to the movement of the Earth’s orbit. In 1700 BC, the Babylonians used decimal systems
and sexagesimal fractions to measure an arc of a circle (Silva, 2003). Determining the location
of points and the orientation of lines can be accomplished by observing angles and directions. In
topographic surveys, directions are obtained based on azimuths and bearings with respect to an
alignment and a starting reference (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The angles measured in the topographic survey are classified as horizontal or vertical, depending
on the reference plane of observation. Horizontal angles are the basic observations necessary for
determining bearing and azimuth in topographic survey. Vertical angles are used in trigonometric
leveling, stadia and for slope correction of horizontal distances. With theodolite and electronic
total station, both horizontal and vertical angles are measured. In digital equipment, we can choose
the type of vertical angle, whether the positive direction of the horizontal angle is clockwise or
counterclockwise and whether the unit of measurement is sexagesimal or grad (Silva, 2003; Ghilani
and Wolf, 1989; Alves and Silva, 2016).

The basic requirements for determining angles are (Figure 4.1) (Alves and Silva, 2016):

e Determination of an initial or reference line;
¢ Sighting direction;
e Angular distance or angular value.

4.4 Angle Measurement Units

The sexagesimal system is used in Brazil, the United States and many other countries as a
reference for measuring angles based on degrees, minutes and seconds, with the last unit divided
into decimals. The grad or gon is commonly used in Europe. The angle unit in radians is most
commonly used in computation and geodetic calculations (Ghilani and Wolf, 1989; Alves and
Silva, 2016).

4.5 Horizontal Angle Types

A horizontal angle is defined by a dihedral angle between two vertical planes passing through
the ends of two alignments (Figure 4.2) (Silva, 2003). The types of horizontal angles observed in
surveying are (Ghilani and Wolf, 1989):

o Internal angles;
o External angles;
e Deflection angles.



4.5 Horizontal Angle Types 79

o Sighting direction (+)

Angular distance

g

Reference or starting line

Alignment of interest
A

FIGURE 4.1: Basic requirements for determining an angle.

The internal angles are observed inside a closed polygon. The angle at each vertex is measured.
A check can be performed on these values, because the sum of all interior angles of polygon must
equal to 180° (Alves and Silva, 2016):

li Ai = (n —2)180° (4.1)

where Ai is the internal angle and n is the number of vertices.

Polygons are commonly used in boundary survey and other work to describe objects such as
buildings in closed geometric figures. Surveyors use the term “closed polygon” when referring to
this type of survey. The direction of determining angles, to the right or left, in the direction of
walking, can determine errors of mistake, if the procedure performed is not systematic (Alves and
Silva, 2016).

External angles, located on the outside of a closed polygon, are complementary to internal angles.
The advantage, by looking at the internal and external angles is the possibility to check the
results, because the sum of these angles must be 360°. In this case, the sum of the external angles
of a closed polygon is (Alves and Silva, 2016) (Figure 4.3):
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FIGURE 4.2: A horizontal angle is defined by a dihedral angle between two vertical planes of
two alignments.

ii Ai = (n+2)180° (4.2)

Deflection angles can be observed from an extension of the previous line toward the subsequent or
forward station. These angles have been used for surveying long linear alignments of routes. De-
flection angles can be observed to the right (clockwise) or to the left (counterclockwise) depending
on the direction of the route. Clockwise angles are considered positive and counterclockwise are
negative. The deflection angles are always smaller than 180° and can be identified according to
the direction, right or left (Figure 4.4).

4.6 Direction of a Line
The direction of a line can be defined by the horizontal angle between the alignment and an
arbitrary reference line called a “meridian”. Different meridians are used to specify directions

(Ghilani and Wolf, 1989; Alves and Silva, 2016):

e Geodetic or true;
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e Astronomical;

o Magnetic;

. GI‘ld,

o Register;

o Relative or arbitrary.

The geodetic meridian defines the north-south reference line that passes through an average posi-
tion of the Earth’s geographic poles. The mean position of the poles was defined between 1900 and
1905 years. The oscillation of the Earth’s axis of rotation determined the temporal variation in
the position of the Earth’s geographic poles. The astronomical meridian is the reference line that
passes through an instantaneous position of the Earth’s geographic poles. The term “astronom-
ical meridian” is derived from the way meridians are determined when demarcating positions of
celestial objects. Geodetic and astronomical meridians are very similar, so that minor corrections
are needed to convert geodetic meridians to astronomical ones. The magnetic meridian is defined
by a suspended magnetic needle influenced by the Earth’s magnetic field. In surveys based on a
plane coordinate system, usually a grid or graticule squared meridian is used as a reference. The
north grid is the direction in geodetic north to a selected central meridian, remaining parallel
to or over the entire filled area in a plane coordinate system. In boundary or boundary surveys,
the term “meridian of a record” is the directional reference recorded on documents from previous
survey of a particular area. Another similar term is “registered meridian”, used in the description
of a parcel of land recorded in the register of a land property. The relative or arbitrary meridian
can be established by determining any arbitrary direction. Thereafter, the direction of all other
lines are determined relative to the arbitrary meridian (Ghilani and Wolf, 1989; Alves and Silva,
2016).
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FIGURE 4.3: Closed polygon with interior angles measured counterclockwise (left) and exterior
angles measured clockwise (right).

4.7 Azimuths

Azimuths are horizontal angles observed clockwise from any reference meridian, ranging from 0
to 360°. In plane surveys, azimuths are usually observed from the north, but astronomers and
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FIGURE 4.4: Angles of deflection used for surveying long linear alignments of routes.

military personnel adopted the south as their reference direction. Azimuths can be geodetic,
astronomical, magnetic, grid, register, and relative, depending on the reference meridian used.
From a line determined in the forward direction of the survey, the forward azimuth is determined,
and for the reverse direction, the reverse azimuth is obtained. On planar surveys, azimuths from
forward have been converted to azimuths from backward and vice versa by adding or subtracting
180°. For example, if the azimuth AB is 60°, the azimuth BA is 60° + 180° = 240°. If the azimuth
BA is 240°, the azimuth AB is 240° - 180° = 60°. Azimuths can be read directly on the graduated
circle of a total station after proper orientation of the instrument. This can be done by sighting
across a line of a known azimuth with its indexed value on the circle and then turning to the
desired course. Azimuths have been used in boundary, topographic, control, and other types of
surveys, as well as in computation determinations (Ghilani and Wolf, 1989; Alves and Silva, 2016)
(Figure 4.5).
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FIGURE 4.5: Graphical comparison of forward and backward bearing and azimuth.
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4.8 Bearing

Bearing is another type of system for determining the direction of lines. The bearing of a line
is defined as the horizontal angle between a reference meridian and an alignment, according to
the corresponding cardinal directions north, east, south, and west, commonly denoted by their
initials N, E, S, and W, respectively. The angle is observed from north to south, in the east or
west direction, to obtain a reading from 0° to 90°. The letters N or S and E or W are combined
after the angle to designate the location of the quadrant giving direction to the alignment to
represent intercardinal directions northeast (NE), southeast (SE), southwest (SW), and northwest
(NW) (Ghilani and Wolf, 1989; Alves and Silva, 2016). Similar to azimuths, bearings can also be
measured forward or backward. Backward bearings must have the same numerical values as the
forward ones, but the letters must be from opposite quadrants. Thus, if the bearing AB is 60° NE,
the bearing BA is 60° SW. As defined for azimuths, the bearings can be: geodetic, astronomical,
magnetic, grid, register and relative, depending on the reference meridian used (Ghilani and Wolf,
1989; Alves and Silva, 2016).

4.9 Azimuth and Bearing Comparison
Since bearings and azimuths are encountered in many survey operations, conversion between these
two types of alignments can be useful, obtained by means of simple equations (Table 4.1) and

graphical visualization (Ghilani and Wolf, 1989; Alves and Silva, 2016) (Figure 4.6).

TABLE 4.1: Comparison between bearings and azimuths.

Quadrant Converting Azimuth to Bearing Converting Bearing to Azimuth

I (NE) Bearing = Azimuth Azimuth = Bearing

II (SE) Bearing = 180° — Azimuth Azimuth = 180° — Bearing
III (SW) Bearing = Azimuth — 180° Azimuth = Bearing + 180°
IV (NW) Bearing = 360° — Azimuth Azimuth = 360° — Bearing

4.10 Azimuth Computation in Traversing

Surveys using polygons require the calculation of azimuths or directions. A polygon is a sequence
of connected lines in which the lengths and angles are noted at the points where the lines joined or
intersected vertices. Traversing lines can be used in many applications, such as surveying boundary
lines between properties, surveying roads between towns, and others. Some professionals prefer to
determine the direction of lines by azimuths, rather than directions, because azimuths are easier
to work with by computation determinations, such as sine and cosine operations. In addition,
directions require knowledge of quadrants and signs of trigonometric functions. To calculate di-
rections in polygons, the direction of at least one side must be known or at least arbitrated. The
angles between the sides of the polygon are measured, and from these values, the directions of the
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FIGURE 4.6: Graphical comparison between azimuth and bearing.

other sides are calculated. On a polygon where the interior angles are measured, the azimuth value
of the previous alignment can be used to obtain the subsequent azimuth. Considering an ABC
alignment, if the BA alignment has a bearing of 41°35" SW, the azimuth BA can be obtained
by adding 180° to the bearing, i.e., the azimuth AB is 180° + 41°35" = 221°35 . If the interior
angle of the alignment ABC' is 129°11’, the azimuth BC' can be obtained by adding the previous
azimuth to the interior angle, i.e., the azimuth BC' is 221°35 + 129°11" = 350°46’. The process
of adding or subtracting 180° to obtain the azimuth from backward and then adding the angle of
each alignment can be repeated until the azimuth of the initial line is calculated, at the closure of
the polygon. In this case, depending on the value of the angle of the alignment, an azimuth greater
than 360° can be determined. Thus, the value of 360° must be subtracted from the total value, in
order to obtain the azimuth value. The polygon angles can be determined to the total geometry
of the figure before calculating the azimuths. In this case, the internal angles must be (n - 2) 180°,
where, n is the number of vertices. If any discrepancy occurs between the results of the sum of the
probable polygon angle and the sum of the measured angles, some arithmetic error was made or
the angles were not obtained properly. Bearings, rather than azimuths, are used predominantly
for surveying divisions. This practice originated in the period when magnetic bearings of parcel
boundaries were determined directly by a surveyor’s compass. Later, other instruments were used
to observe the angles, and the astronomical meridian came into use. The practice of using bearings
for land surveying is still in use, because the boundaries of recent surveys must follow the original
alignments, and it is necessary to understand magnetic directions and their variations (Ghilani
and Wolf, 1989; McCormac et al., 2012; Alves and Silva, 2016).
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4.11 Vertical Angles

The graduated circle of the measuring instrument can have three positions with origin in the
vertical angle count. When the origin (zero) is in the position of zenith, the zero is adopted as
zenith and the vertical angle is called zenith angle (Z). This type of angle can be the most usual
in the equipment according to the most adopted form in each country. When the origin is in
the horizontal position, zero is adopted in the horizontal plane and the vertical angle is named
angle of height, elevation, or inclination («). When the zero is in the nadir, the vertical angle is
a denominated nadiral angle (n) (Silva, 2003) (Figure 4.7). Simply identifying the position of the
origin when measuring vertical angles prevented the occurrence of gross errors in readings.

Zenith Zenith Zenith

T
W

270° \ 00° 0° 0° 270° 90°
180° 90° 0°
Zenith angle Height Angle Nadir Angle

FIGURE 4.7: Types of vertical zenith angle (left), height angle (middle), and nadir angle (right).

4.12 Angular Reading System for Mechanical Optical Instruments

There are numerous angle reading systems developed for mechanical optical theodolites. The
theodolites are built with strict quality control, so that the center of the horizontal circle must
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coincide with the major axis. The center of the vertical circle must coincide with the secondary
axis. Thus, angular measurements can be referenced for angle readings (Barcellos, 2003).

4.13 Electronic Angle Measurement

The main physical components of an electronic angle measurement system are (Barcellos, 2003):

e A crystal circle with transparent light and opaque dark regions, encoded by a photolithography
process;
o Light detecting photodiodes that pass through the graduated crystal circle.

The encoding and angle measurement can be based on the incremental and the absolute principle.
In the incremental principle, the value is provided relative to an initial position. In the absolute
principle, the angle value is provided for each position of the circle. In the incremental model, a
glass disk with equally spaced opaque and transparent traces is used. A light is placed on one
side of the circle and a photodetector on the other side, at positions LR and LS of the disk.
This enables one to count the number of pulses when the theodolite rotates from one position to
another to measure the angle. This number of pulses can be converted and displayed on a digital
display (Kahmen and Faig, 1988).

In the absolute model, opaque trails arranged concentrically on a disk in the non-radial direction
are used in the angle measurement. The number of trails is determined by the radius, not the
perimeter. The value zero is obtained when the light does not pass through the disk and one
when the light passes through. A series of radially shaped diodes can associate each position of
the circle with a sequential binary code in decimal format (Barcellos, 2003).

In the TPS1100 electronic total station system, the glass disk carries only a grating line with
codes on the positional information. The position is read by a CCD camera, and an 8-bit A/D
converter provides the approximate position with 1 second accuracy. The fine measurement is
performed by an algorithm that determines the average value between the center positions of
each code line captured by the camera. At least 10 lines of code must be captured to determine
the position; however, a simple measurement involves 60 lines of code, improving interpolation
accuracy, redundancy, and replicability. This principle is applied for Leica total stations and
theodolites (Zeisk, 1999).

The horizontal angle value is corrected before it is displayed or recorded by the instrument. The
correction is calculated by parameters obtained from the vertical angle measurement, such as the
last collimation error stored in the instrument, the verticality component of the transverse axis
with respect to the line of sight. The vertical angle is corrected by the stored error index and the
component of the vertical axis with respect to the line of sight. A vertical offset sensor monitors
the variance components of the vertical axis. The reticle located on the prism is illuminated by an
LED and imaged by a lens. The signal is deflected by a prism and subjected to double reflection on
the liquid surface of a CCD camera. The triangular line pattern of the reticle enables to capture
the vertical axis shift components by means of a unidirectional receiver (Zeisk, 1999).

The tilt sensor can be used to automatically compensate for instrument axis tilts (Barcellos,
2003).
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4.14 Compass and Earth’s Magnetic Field

Before the invention of transits, theodolites, and total station instruments, the direction of lines
and angles was determined by means of compasses. The compass needle is free to rotate and align
itself to the axis of the Earth’s magnetic field, pointing in the direction of the magnetic meridian.
The locations of the Earth’s north and south geomagnetic poles are continually changing. It should
be noted that the compass needle can be affected by local attractions such as anomalies caused
by power lines, railroad tracks, and metal clasps (Ghilani and Wolf, 1989; Alves and Silva, 2016)
(Figure 4.8).

FIGURE 4.8: Mobile compass (left) and analog handheld compass (right).

The Earth’s magnetic forces not only align the compass needle, but also pull or sink one end
below the horizontal position. The depth angle of the needle ranges from 0° near the Equator
to 90° at the magnetic poles. In the Northern Hemisphere, the southern end of the needle was
weighted with a small wire roller to balance the depth effect by keeping the compass horizontal.
The position of the wire roller can be adjusted according to the latitude at which the compass is
used (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The Earth’s magnetic field looks like a large magnetic dipole located at the center of the Earth,
with a displacement of the Earth’s axis of rotation. This field has been observed at about 200
magnetic observatories around the Earth, as well as at other temporary stations. The field strength
and direction have been measured at each observation point based on many years of data. Models
of the Earth’s magnetic field were subsequently developed. These models are used to calculate
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magnetic declination and annual change, in view of the importance of these variables in surveys.
The accuracy of the models is affected by several items, including observation locations, rock types
and geological structures on the surface, and local attractions (Ghilani and Wolf, 1989; Alves and
Silva, 2016).

4.15 Magnetic Declination and Meridian Convergence

Magnetic declination is defined as the observed horizontal angle from the geodetic meridian to
the magnetic meridian. Navigators call this angle the “compass deviation”. The military uses the
term “deviation”. East declination occurs when the magnetic meridian is east of geodetic north. A
westerly declination occurs when the magnetic meridian lies west of geodetic north. Eastward and
westward declinations are considered positive and negative, respectively. The relationship between
geodetic north, magnetic north, and magnetic declination (md) can be obtained by the geodetic
azimuth (ga) and magnetic azimuth (ma) (Ghilani and Wolf, 1989; Alves and Silva, 2016):

ga = ma+ md (4.3)

Since the magnetic pole is constantly changing, magnetic declination is also changing. The mag-
netic declination of any location can be determined, eliminating the effect of any local attraction,
by determining the meridian by astronomical or global navigation satellite system (GNSS) ob-
servations and then taking a compass reading with a sight on the determined meridian. Another
way to determine the magnetic declination of a point can be done from isogonic and isophoric
charts, which represent the temporal and spatial variation of magnetic declination, respectively
(Figure 4.9) (ON, 2020). Computer programs can also determine magnetic declination, based on
mathematical models. In this case, the variation of magnetic declination can be interpolated at
any location between lines representing distinct declination values (Ghilani and Wolf, 1989). With
spatial analysis of the geomagnetic field over time, crucial information about the Earth and the
conditions of the outer mantle core can be obtained, and current measurements can be compared
with historical records of geomagnetic distribution (Herndndez-Quintero et al., 2020). Chernetsov
et al. (2017) observed that experienced adult birds (Acrocephalus scirpaceus) use magnetic decli-
nation to migrate considering longitude variation, under absence of clouds.

Meridian convergence is the angular difference between the grid meridian of a plane projection and
the geodetic meridian. Meridian convergence can be presented in topographic surveys to indicate
the distance of the alignment from the grid’s central meridian and the effect of distortion caused
by converting the Earth’s curvature to a plane surface.

4.16 Sources of Time Variation of Magnetic Declination

The temporal variation of magnetic declination can be secular, daily, annual, and irregular (Ghi-
lani and Wolf, 1989; Alves and Silva, 2016). Secular variation is one of the most important
variations of magnetic declination. Unfortunately, no physical law has been discovered to make
long-period predictions of the secular variation, and its behavior in the past can be described only
by tables and detailed data obtained by observations (Ghilani and Wolf, 1989; Alves and Silva,
2016). When re-drawing old lines based on compass or magnetic meridian, it was necessary to
know the difference in magnetic declination at the survey date and at the present date (Ghilani
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FIGURE 4.9: Determination of magnetic declination for a point in Minas Gerais state, Brazil,
by the mathematical model geomagnetic reference field, on September 15, 2020.

and Wolf, 1989; Alves and Silva, 2016). The daily variation of the compass needle determines a
variation generally disregarded because it is within the expected error in the compass reading
(Ghilani and Wolf, 1989; Alves and Silva, 2016). The annual variation determined by periodic os-
cillation is less than 1’ of arc and can be neglected. This variation should not be confused with the
annual variation determined by secular variation in a given year (Ghilani and Wolf, 1989; Alves
and Silva, 2016). The irregular variation is determined by magnetic disturbances and storms that
can cause small irregular variations of one degree or more (Ghilani and Wolf, 1989; Alves and
Silva, 2016). In Brazil, the National Observatory (ON), created in 1827, is a research institute
linked to the Ministry of Science, Technology and Innovation, working in the areas of Astron-
omy, Geophysics and Metrology in Time and Frequency. The activities of this institute include
the training of researchers in graduate courses, the generation, conservation and dissemination of
the Brazilian legal time and the dissemination of knowledge produced by specialized activities.
On the National Observatory web page, it is possible to obtain isogonic and isophoric charts that
represent the spatial and temporal variation of the magnetic declination of the Brazilian territory,
respectively (Alves and Silva, 2016).
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4.17 Computation of the Magnetic Declination

Computer programs can quickly provide magnetic declination values using models developed
based on historical magnetic declination data and year-to-year variation obtained from observation
stations around the world (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Latitude and longitude values of the location and the date of the survey are provided as input data
using the software. The results are presented for viewing and printing. Annual rates of change
in magnetic declination can be determined using programs made available from the National
Observatory, the National Geophysical Data Centers (NGDC) maintained by the National Oceanic
and Atmospheric Administration (NOAA) (Alves and Silva, 2016) or using the R package oce
(Kelley et al., 2020).

The magnetic declination in the Lavras city, Minas Gerais, Brazil is calculated by Magnetic Field
Calculators available by the National Oceanic and Atmospheric Administration (NOAA) website
(Figure 4.10) (NOAA, 2020a).

Another application of determining magnetic declination is presented in the computation practice
using the magneticField function of the R package oce (Kelley et al., 2020).

4.18 Local Compass Attraction

Metallic objects and electric current can cause local attraction, affecting the main electromagnetic
field. Local attraction can be detected using forward and backward readings from a compass
alignment. If the angular measurements differ more than the errors of normal observations, it
means that local attraction of the compass surveying occured (Ghilani and Wolf, 1989; Alves and
Silva, 2016).

4.19 Mistakes in Measuring Angles

Some mistakes observed when using azimuths and bearings are (Ghilani and Wolf, 1989; Alves
and Silva, 2016):

o Confusion between magnetic bearings and other reference bearings;

o Confusion between clockwise and counterclockwise marked angles;

e Swapping bearings for azimuths;

o Presenting bearings with angular value greater than 90°;

o Failing to include direction letters when setting bearings;

o Failing to change bearing letters when using a line’s backward direction;

o Using the wrong angle when calculating bearings;

¢ Adopting a reference line that is difficult to reproduce;

e Taking readings in decimal degrees from a calculator, when it should be degrees, minutes and
seconds;

o Failing to adjust polygon angles before calculating bearings or azimuths.
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FIGURE 4.10: Determination of magnetic declination by the International Geomagnetic Ref-
erence Field model, in Lavras, Minas Gerais, Brazil, on September 15, 2020.
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4.20 Computation

In this computation practice the R packages oce (Kelley et al., 2020), LearnGeom (Briz-Redon
and Serrano-Aroca, 2020) and circular (Lund et al., 2017a) are used to perform conversions
between different angle systems, mathematical operations with angles, trigonometric calculations,
determination of angles in geometric figures, determination of the Earth’s magnetic field by model
at different times, and graphical evaluation of the bearing quadrant.

In the R package oce we can analyze oceanographic data and topographic data, using specific
functions and graphical results (Kelley et al., 2020). The LearnGeom package includes a set of func-
tions for learning and teaching basic plane geometry at the undergraduate level for students new
to programming (Briz-Redon and Serrano-Aroca, 2020). The circular package includes functions
for circular statistics and conversions between units of angles (Jammalamadaka and SenGupta,
2001).

4.20.1 Installing R packages

The install.packages function is used to install the oce, LearnGeom and circular packages in the
R console.

install.packages("oce")
install.packages('"LearnGeom")
install.packages('"circular")

4.20.2 Enabling R packages

The library function is used to enable the oce, LearnGeom and circular packages in the R console.

library(oce)

## Error in get(genname, envir = envir)
#H# objeto 'testthat_print' ndo encontrado

library(LearnGeom)
library(circular)

First of all, angle conversions from degrees, minutes and seconds to decimal degrees and vice versa
are performed. Then trigonometric calculations and measurements of angles on geometric figures
are performed. Finally, magnetic declination is determined and mapped on the Earth and the
bearing quadrant of alignments is evaluated in graphical format.
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4.20.3 Conversions in the sexagesimal system

In converting angles in the sexagesimal system, division, sum, and multiplication operations are
performed to convert angles. In converting angles to decimal degrees, the values for minutes and
seconds are transformed into degrees by dividing the minute by 60 and the seconds by 3600. With
the sum of all the values, the angle is determined in degrees. When determining decimal degrees
for degrees, minutes and seconds, the decimal degrees are multiplied by 60 to obtain minute
values, and the decimal minute is multiplied by 60 to obtain second values.

# Convert 65°20'30" to decimal degrees
65+20/60+30/3600

## [1] 65.34167

# Convert 65.34167 decimal degrees to degrees, minutes and seconds
65

## [1] 65

0.34167*60

## [1] 20.5002

0.5002%60

## [1] 30.012

4.20.4 Algebraic operations of angles

The algebraic operations of adding, subtracting, and dividing angles are performed. This required
converting the angle values to decimal degrees before performing the operations.

# Add 65°20'30" and 180°
(65+20/60+30/3600) + 180

# Subtract 65°20'30" and 180°
(65+20/60+30/3600) - 180

# Divide 180° by 65°20'30"
180/ (65+20/60+30/3600)
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4.20.5 Conversions between degrees, radians and grads
The conversions between degrees, radians and grads are performed step-by-step, using the concepts

involved in determining these units. The rad and deg functions are used to convert degrees into
radians and radians into degrees, respectively.

# Convert 120 degrees to radians
# pirad<-180

# xpirad<-120

X<-120*pi/180

X

## [1] 2.094395

# or
rad(120)

## [1] 2.094395

# Convert 2 pi radians to degrees
pirad<-180
2*pirad

## [1] 360

# or
deg (2*pi)

## [1] 360

# Convert 7/4 pi radians to degrees
pirad<-180
7/4*pirad

## [1] 315

# or
deg(7/4%pi)

## [1] 315
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# Convert 1 degree to degrees

# xdegree=60minutes

# ygrad=100minutes

# ygrad=(xdegreex100)/60; xdegree=(ygrad+*60)/100
(1%x100) /60

## [1] 1.666667
4.20.6 Trigonometric calculations with angles
Trigonometric calculations have also been used in surveying and geodesy. In R, trigonometric

determinations must be performed with angles in radians, not degrees. Therefore, we must convert
the angle to radian measure before calculating sine, cosine, tangent and arc tangent.

# Determine the cosine of 120 degrees
cos (120%pi/180)

## [1] -0.5

# Determine the cosine of 90 degrees
cos (90*pi/180)

## [1] 6.123032e-17

# or
cos(rad(90))

## [1] 6.123032e-17

# Determine the arc cosine of 6.123032e-17
acos (6.123032e-17)*180/p1i

## [1] 90

# or
deg(acos(6.123032e-17))

## [1] 90
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# Determine the sine of 120 degrees
sin(120%pi/180)

## [1] 0.8660254

# Determine the tangent of 45 degrees
tan (45%pi/180)

## [1] 1

# or
tan(rad(45))

## [1] 1

# Determine the arc tangent of 1
atan(1)*180/pi

## [1] 45

# or
deg(atan(l))

## [1] 45

4.20.7 Determining angles in geometric figures

97

If you have the geometry of the area of interest, angles can be determined using the three vertices
that define the angular range. As an example, we can determine the angle between vertices of a

triangle or other geometric figure of interest, in degrees (Figure 4.11).

# Define the grid
Xx_min <- -2
Xx_max <- 1
y_min <- -1
y_max <- 2

CoordinatePlane(x_min, x_max, y_min, y_max)

# Define triangle vertices
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A <- c(-1,0)

B <- ¢(0,0)

C <- ¢c(0,1)

# Draw angles

Draw(CreatePolygon(A, B, C), "lightgrey")
angle <- Angle(A, B, C, label = TRUE)
angle <- Angle(A, C, B, label = TRUE)
angle <- Angle(B, A, C, label = TRUE)

2.0

15

1.0

45 3

0.5

-1.0

2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

FIGURE 4.11: Determining and mapping angles in triangular geometry.

4.20.8 Determining the Earth’s magnetic field

In the case of surveys where it is necessary to use a compass, it may be interesting to obtain the
geodesic positioning of the area of interest by varying the magnetic field. Based on the geographic
coordinates (latitude and longitude of the area of interest), the magnetic intensity, inclination
and declination of Lavras, Minas Gerais, Brazil, are determined in the International Geomagnetic
Reference Field 12th generation (IGRF-12) model on the date the function can be executed using
the system date compared to the year 2000.
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# IGRF-12 results for the current date
magneticField(-45.0014, -21.2485, Sys.Date())

## Sdeclination
## [1] -22.79053
##

## $inclination
## [1] -38.13015
##

## S$intensity

## [1] 23161.88

# IGRF-12 results for the Year 2000
magneticField(-45.0014, -21.2485, 2000)

## S$declination
## [1] -20.52985
##

## $inclination
## [1] -31.05882
#it

## S$intensity

## [1] 23387.31

4.20.9 Mapping the Earth’s magnetic field

Considering the interest to assess the variation of the Earth’s magnetic field in different years,
contour maps can be used to characterize the spatial and temporal variation of the magnetic
declination. In this case, a comparative mapping of the Earth’s magnetic declination was carried
out between 2000 and 2020 in the Robinson pseudocylindrical 2D global cartographic projection
(Figure 4.12).

par (mfrow=c(2,1))
# Mapping the Earth's magnetic declination in 2000
data(coastlineWorld)
par(mar=rep (0.5, 4))
mapPlot (coastlineWorld, projection="+proj=robin", col="Tlightgray")
# Create the declination matrix
lon <- seq(-180, 180)
lat <- seq(-90, 90)
dec2000 <- function(lon, lat)
magneticField(lon, lat, 2000)$declination
dec <- outer(lon, lat, dec2000)
# Make contour maps for magnetic declination variations
mapContour (lon, lat, dec, col='black', levels=seq(-180, -5, 5),
1ty=3, drawlabels=FALSE)
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mapContour (lon, lat, dec, col='black', levels=seq(-180, -20, 20))

mapContour (lon, lat, dec, col='black', levels=seq(5, 180, 5),
1ty=3, drawlabels=FALSE)

mapContour (lon, lat, dec, col='black',6 levels=seq(20, 180, 20))

mapContour (lon, lat, dec, levels=180, col='black', lwd=2,
drawlabels=FALSE)

mapContour (lon, lat, dec, levels=0, col='black', lwd=2)

# Mapping the Earth's magnetic declination in 2020

data(coastlineWorld)

par(mar=rep(0.5, 4)) # no axes in the global projection

mapPlot (coastlineWorld, projection="+proj=robin", col="Tlightgray")

# Create the declination matrix

lon <- seq(-180, 180)

lat <- seq(-90, 90)

dec2000 <- function(lon, lat)

magneticField(lon, lat, 2020)$declination

dec <- outer(lon, lat, dec2000)

# Make contour maps for magnetic declination variations

mapContour (lon, lat, dec, col='black', levels=seq(-180, -5, 5),
1ty=3, drawlabels=FALSE)

mapContour (lon, lat, dec, col='black', levels=seq(-180, -20, 20))

mapContour (lon, lat, dec, col='black', levels=seq(5, 180, 5),
1ty=3, drawlabels=FALSE)

mapContour (lon, lat, dec, col='black', levels=seq(20, 180, 20))

mapContour (lon, lat, dec, levels=180, col='black', lwd=2,
drawlabels=FALSE)

mapContour (lon, lat, dec, levels=0, col='black', lwd=2)

4.20.10 Evaluating the quadrant of a bearing on the wind rose based on the
vector projection

In topographic surveys it has been necessary to define the direction of alignments by azimuths
and bearings. From the azimuth and distance angle values we usually calculate the partial and
absolute projections of the mapped vertices. Based on the vector projection, it may be necessary
to obtain the quadrant in which the vertex is located in order to perform inverse calculations
according to the direction between the mapped vertices. The quadrant mapping of the direction
relative to the vectors can be obtained with the as.windrose function in the R package oce (Figure
4.13).

par (mfrow=c(1,2))

# Quadrant of bearing on vector projection (-5, 10)
xcomp <- -5

ycomp <- 10

wr <- as.windrose(xcomp, ycomp)

plot(wr, col=c("black", "black", "black", "gray"))
# Quadrant of bearing on vector projection (5, 10)
xcomp <- 5

ycomp <- 10
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FIGURE 4.12: Comparative mapping of the Earth’s magnetic declination in 2000 (top) and
2020 (bottom).

wr <- as.windrose(xcomp, ycomp)
plot(wr, col=c("black", "black", "black", "gray"))

4.21 Solved Exercises

4.21.1 The first direction of a boundary survey was defined as 32°13" NW.
What is the equivalent azimuth?

A: Given that the bearing is in the northwest quadrant, the azimuth is 327°46.998" .



102 4 Angle and Direction Observations

Counts (max 1) Counts (max 1)
N N
w E w E
S S

FIGURE 4.13: Bearing determination in the northwest (left) and northeast (right) quadrants.

360-(32+13/60)

## [1] 327.7833

0.7833%60

## [1] 46.998

4.21.2 The magnetic bearing of a line on a rural property was recorded as
43°30" SE in 1862. At that time, the magnetic declination at the survey
location was 3°15" W. What geodetic bearing would be needed for a
plan to divide the property (Figure 4.14)?

A: The geodetic bearing for dividing the property is 46°45" SE.

43+30/60+3+15/60

## [1] 46.75

0.75*%60

## [1] 45
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315" NW

S

FIGURE 4.14: Determining the geodetic bearing of a rural property.

4.21.3 Calculate the magnetic declination of the city where you were born
using Magnetic Field Calculators available at the NOA A website.

A: Access the website address at reference NOAA (2020a) and perform the survey.

4.21.4 What are the disadvantages of assuming a relative meridian at the
beginning of a polygon survey?

A: The disadvantages are the inability to re-establish the points if the original points are lost and
the non-conformity with other surveys of the same area.

4.22 Homework

Choose two exercises presented by the teacher and solve the questions with different input values.

Compare the results obtained. If possible, use a real database measured in the field with an
available instrument.
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4.23 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter (Table 4.2).

TABLE 4.2: Slide shows and video presentations on measuring angles and magnetic declination.

Guide Address for Access

1 Slides on angle measurement in geomatics'
Horizontal and vertical angle measurement with theodolite?
Horizontal angle measurement and recording®
Magnetic declination charts in the United States (1590-2020)*
Information on magnetic declination®
Measuring horizontal angles and distances using total station or theodolite®
Bearings and deflection angles”

~N O U W N

4.24 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 4.3).

TABLE 4.3: Practical and research activities used or adapted by students using angle measure-
ment and magnetic declination.

Activity Description
1 In the content about angles and magnetic declination, interest may arise in doing
practical work based on the computation examples presented
2 Perform the analysis of the variation of magnetic declination at a location between
different years. Compare and discuss the results obtained
3 Perform angle measurements using a sighting instrument. Also practice installing

the equipment above a landmark and zeroing the instrument using a compass at
magnetic north in order to obtain the magnetic azimuth of the measured angles

1http://www.sergeo.deg.uf'La.br/geomat'ica/book/c4/presentat'ion.html#/
2https://youtu.be/ckR-wBUTUA
3https://youtu.be/?aYsAleZkg
4https://youtu.be/wLZalanGlE
5https://youtu.be/WwIKx96q81E
6https://youtu.be/8HAz—DrC65k
7https://youtu.be/QYSKzlogXAO
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4.25 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Angle and Direction Observations with Geomatics and R”,

on a single A4 page in order to show the student’s abilities to summarize a subject presenting key
points considered of greater importance today.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com
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Direct Distance and Angle Measurements

5.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o How are diastimeters used in measuring alignments and angles in geomatics?

o How is distance measurement with taping performed on sloping terrain or over vegetation?

e« How to transpose obstacles when measuring with taping.

¢ How can physical and environmental factors interfere with measuring results?

o How to calibrate taping measure for slope and horizontal alignment correction.

o How to draw a polygonal area, determining vertices angles and polygonal area from diastimeter
measurements with R software, circular and LearnGeom packages.

5.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Know the diastimeters used in measuring alignments and angles based on the law of cosines.

e Know how the distance measurement with taping on sloping terrain or over vegetation is per-
formed, necessary adjustments in on-site measurements, such as the transposition of obstacles
and the understanding of factors that interfere in the measurement such as temperature, pull
and sag.

e Measure angles in a survey with taping, correction of slope and horizontal alignment.

e Draw a polygonal area, determining the angles of the vertices and the polygon area based on
measurements taken with diastimeter, R software and R packages circular and LearnGeom.

5.3 Introduction

Distance is a numerical description of how far or close things are and is the most fundamental
concept in geography. In the First Law of Geography, Waldo Tobler stated that “everything is
related to everything, but things near are more related than things far away” (Lovelace et al.,
2019b).

Distance measurement is a fundamental process among all survey measurements. In traditional
surveys, even if many angles are measured, the length of at least one line must be determined
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as a supplement to the angles at the located points. In plane surveys, the distance between two
points referred to the horizontal distance (H). Considering points at different altitudes, H is the
horizontal length between the vertical lines at each point.

The instruments used for direct measurement of distances are called “diastimeters”. In polygon
surveying with diastimeter, alignments and angles can be measured using the cosine law. Another
option is measuring perimeter lines and some internal lines based on geometry patterns looking
to the map (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The quantities measured in topographic survey can be linear and angular. The linear quantities
are mainly horizontal distance (H), vertical distance or leveling difference (d). When we want to
measure the slant distance AB or EF, it is necessary to know the angle of inclination « (Figure
5.1) (Garcia and Piedade, 1987).

FIGURE 5.1: Measurement of horizontal distance (H) and level difference (d) in geomatics.

The most commonly used metric units for linear distance measurements can be obtained by
different methods and equipment; however, the focus of this chapter is on distance and angle
measurements in surveying with taping.

5.4 Measuring Distance with Taping

The most commonly used diastimeters in direct distance measurement are: tape, steel tape, and
surveyor’s chains. Tapes are made of polyvinyl chloride (PVC), fiberglass or steel, and graduated
in meters, decimeters and centimeters, with lengths varying up to 50 m. Steel tapes are made
of stainless steel blade, graduated in meters and decimeters with lengths ranging from 20 to 100
m, and are wound on a drum or cross. The surveyor’s chain, when used, is made of steel or
iron, joined together two-by-two by means of links. Generally, every one or two meters, there is a
metal pendant that indicates the metreage. The most common chains are 20 m long. The distance
between links is 20 cm (Garcia and Piedade, 1987).
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Accessories used to make taping measurements are: pickets, stakes, range poles (ranging rod) and
chaining pins or taping pins, to mark points and taping lengths. The purpose of the accessories
is to enable locating and materialing topographic points on the terrain. Pickets measuring 15 to
30 c¢m should be 3 to 5 cm above the terrain. Stakes are used beside each picket to note the point
number and should be 50 ¢cm above the terrain (Figure 5.2) (Garcia and Piedade, 1987).

FIGURE 5.2: Steel, fiberglass and PVC tape, plumb bob, pickets, and tubular bubble stick level
used for surveying.

In measuring distances with taping, a tape of known size is applied directly on a line for a number
of repetitions, performing the following steps (Ghilani and Wolf, 1989; Alves and Silva, 2016):

o Stretch the tape measure over the surface;

e Apply tension to the ends;

o Leveling the tape measure, define the length to be measured;
¢ Read the marked value and record the distance.

In measuring horizontal distance between points A and B, we try to measure the projection
A’ B’ on the topographic plane H’ (Figure 5.3). Measuring the distance A’B’, one end of the
diastimeter is placed at B" and the other end is taken to point A", keeping the tape measure
horizontal. The alignment between points A and B must correspond to the line containing AB
on the topographic plane (Garcia and Piedade, 1987; Alves and Silva, 2016).

When measuring distances greater than the length of diastimeters, range poles are used to avoid
going out of alignment. In stakeout, three people, the backward, forward and intermediate marker,
each with one marker, determine the forward alignment based on sighting at the intermediate and
backward marker (Figure 5.4). Under high gradients, we can measure 5 to 10 m stretches at a
time, to make it easier to keep the diastimeter horizontal (Alves and Silva, 2016; Garcia and
Piedade, 1987).
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FIGURE 5.3: Horizontal distance measurement with a diastimeter.
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FIGURE 5.4: Measuring great distances with diastimeter.
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5.5 Distance Measurement on Slant Terrain with Taping

On sloping terrain, three methods of measuring with a tape measure can be used (McCormac
et al., 2012; Alves and Silva, 2016):

e The tape measure can be held horizontal by means of plumb lines;

e The tape measure can be held on the slope and then a slope correction is determined to obtain
the horizontal distance;

e The slope distance and vertical angle can be measured for each slope followed by subsequent
calculation of the horizontal distance.

5.6 Extension Alignment

Extending an existing alignment AB, an auxiliary surveyor stands at the starting point A and the
direction is oriented according to the sight plane defined by the first two range poles. New range
poles are placed in the same direction so that they are covered by the first two range poles. In case
of large distances, the auxiliary surveyor responsible for orientation moves to the second-to-last
placed range pole and continues to extend the alignment. The accuracy of the alignment decreases
with the increasing number of necessary changes that the responsible auxiliary surveyor makes,
due to human errors (Garcia and Piedade, 1987; Alves and Silva, 2016) (Figure 5.5).

5.7 Perpendicular Tracing with Taping

Plotting perpendiculars on the terrain has been necessary in different applications, such as demar-
cating an alignment perpendicular to an existing one or as an aid in tying up details of interest
during a survey. Either right-angle or isosceles triangle demarcation methods can be used. To
mark out a right angle using the right triangle, in practice a 12 m tape measure is used to form
a triangle with 3, 4 and 5 m sides. One assistant surveyor at point C, on the line AB, 3 m from
point A, holds the 0 m and the 12 m of the tape (initial handle), while another holds the 3 m
over point A and a third holds the 7 m. When stretching the tape, the helper who holds the 7 m
takes a new position which defines the angle of 90° with the AB alignment (Figure 5.6) (Garcia
and Piedade, 1987; Alves and Silva, 2016).

In tracing the angle of 90° using the isosceles triangle, if at the alignment AB, it is desired to trace
a perpendicular defined at point C. Equal distances are measured in the CA and C'B directions,
defining d and e points. Two assistants, one at d and one at e, hold the ends of the tape and a
third holds the middle of the tape. By stretching the tape, the perpendicular direction is defined
at point C' and the middle of the tape, materializing point D at the perpendicular (Figure 5.7)
(Garcia and Piedade, 1987; Alves and Silva, 2016).
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FIGURE 5.5: Extending the alignment of large distances using range poles.

5.8 Taping with Obstacles
5.8.1 Non-visible endpoints of alignment

In topographic work, measuring the distance between two non-visible points may be necessary,
as under obstacles between the points, in front of buildings, vegetation or other obstacles. In this
case, a procedure can be used to calculate the desired distance by knowing the sides of similar
triangles. A point C'is chosen from which the points A and B of the alignment to be measured are
sighted. The distances C'A and C'B are measured. Obeying some ratio 1/2 or 1/3 of the measured
alignments (CA and CB), points D and E are marked. The distance DFE is measured (Figure
5.8) (Garcia and Piedade, 1987; Alves and Silva, 2016).

By the similarity of triangles formed, we have:

CD CE CD DE

CA = CB CA~ AB (5:1)
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FIGURE 5.6: Using the right triangle to draw perpendiculars.

FIGURE 5.7: Using the isosceles triangle to define 90-degree angle alignment with diastimeters.
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FIGURE 5.8: Using the similar triangle to measure the distance between points separated by
obstacles.

where

_ CA DE

AB oD

(5.2)

5.8.2 Visible endpoints of alignment

The measurement of a line-up that crossed a swamp, lake, pond, dam, building depression, or gully,
required circumventing the obstacle using perpendiculars and parallels obtained by right angles.
Right angles can be demarcated with chain and range poles, using a right-angled or isosceles
triangle (Figure 5.9) (Garcia and Piedade, 1987; Alves and Silva, 2016).

5.9 Locating Details with Taping

In addition to measuring lines, it has almost always been necessary to locate a terrain accident
and details, such as cultivated fields, buildings and roads. To do this, it becomes necessary to tie
or reference this accident, detail or other geographic object using several points tied to a reference
line (Garcia and Piedade, 1987; Alves and Silva, 2016).
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FIGURE 5.9: Using right angles for transposing obstacles from visible points.

5.10 Measuring Angles with Taping

In order to know the value of an angle using a diastimeter, we must determine the sides of any
triangle containing the angle to be measured and apply the cosine law (Figure 5.10) (Garcia and
Piedade, 1987; Alves and Silva, 2016):

b2 = a® + ¢ — 2accosa (5.3)

22 2
cosa = % (5.4)

We can use a = ¢ so that the angle can be determined by chord table.

In the field survey, with taping and range poles we marked the horizontal distance in the BA
direction and in the BC' direction, defining points A and C'. The tape line is stretched to connect
points A and C, measuring the distance formed (chord). Then, using the cosine law, the angle is
determined. It should be noted that, in this example, the resolution of the angle can be done in a
simple way based on the 3, 4 and 5 catets of the right triangle. However, the law of cosines would
be a solution for different types of triangles. Thus, to survey a polygon with diastimeter, we can
either measure the alignments and angles using the law of cosines, or measure the perimeter lines
and some internal lines forming triangles to make the plan. At the same time, a sketch of the
field operations is made. During a survey, the use of a field notebook facilitates the recording of
distance measurements with a diastimeter. In this case, an starlike symbol (*) can be used as an
external angle symbol reference to the polygon (Table 5.1) (Alves and Silva, 2016).
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FIGURE 5.10: Surveying the polygon ABCDEFGHA with a diastimeter.

TABLE 5.1: Field notes of a polygon survey with diastimeter.

Alignment H (m)

Chord (m)

AB
BC
AC
CD
DE
CE
EF
DF
FG
GE
GH
HA
GA

4
3

5*

When surveying with taping we must observe if the area surveyed contains obstacles, such as walls
of a building, or if it is an open area, such as a pasture field where you can establish a dynamic of
pickets for cattle grazing from the taping survey. If there are building walls, it may be necessary
to define external areas for area determination that should be excluded from the final polygon
area. In the case of unobstructed areas, the inner areas of the polygon itself can be used to define

angles and area.
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5.11 Area Assessment with Taping Measurements

The knowledge of an area by means of graphic representation to define size, contour, relief, natural
accidents, details of buildings, and its relative position on the Earth’s surface have been frequent
concerns of professionals responsible for urban, rural, and conservationist planning and projects,
or simply for the need to know the elements that characterized a given area. When surveying a
polygon with a diastimeter, the described process for measuring angles and distances of alignments
can be carried out carefully and accurately with the use of range poles. The area can also be
surveyed by measuring perimeter lines and some internal lines in order to form triangles that can
be used to make the map. At the same time, a sketch of the field operations should be made. In
general, the term “area” is defined as the region occupied inside the boundary of a plane object in
space. The measurement is done in square units with the standard unit being square meters (m?).
For the area computation, there are pre-defined formulas for squares, rectangles, circle, triangles,
and other geometric figures. The area of a triangle can be computed from different formulas and
types of triangles. The area (A) of a triangle can be determined by looking at the polygon graph
and calculating the area of a triangle BAC'. Basically, the triangle area is equal to half of the base
times height. Hence, to find the area of a tri-sided polygon, we have to know the triangle base
(b) and height (h), based on the following equations (Garcia and Piedade, 1987; Alves and Silva,
2016):

A== (5.5)

where b and h are the base and the height of the triangle, respectively.

The area of a triangle with three sides of different measures can be found using Heron’s formula
based on the perimeter of a triangle information. The perimeter of a triangle is the distance
covered around the triangle, calculated by adding all three sides of a triangle. Heron’s formula
included two steps. In the first step, the semiperimeter of a triangle is found by adding all three
sides of a triangle and dividing it by two. In the second step, the semi perimeter of triangle value
is used to find the triangle area. These equations are used in situations where it is difficult to
measure the height of the triangle. Thus, we can calculate triangle area using Heron’s formula
and the semiperimeter equation (p) (Garcia and Piedade, 1987; Alves and Silva, 2016):

A=/plp—a)(p—1b)(p—rc) (5.6)

at+b+c
2

where p = and a, b, c are the sides of the triangle.

In case the value of an angle is known, the area of the triangle can be calculated by (McCormac,
2007; Alves and Silva, 2016):

A= %acsena (5.7)

After calculating the area of each triangle, the total area is obtained by adding up the areas of
the triangles demarcated throughout the mapped region.
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5.12 Taping Calibration and Measurement Correction

Studying measurements with tape measures has made it possible to understand the measurement
process as a whole, regardless of the survey operation involved or the equipment used. The main
situations where corrections may need to be applied in taping measurements are (McCormac,
2007; Alves and Silva, 2016):

o Taping length calibration;

o Temperature variations;

o Inclination and off-line alignment;

o Applying little tension on the ends causing sag in the tape measurement (Catenary);
o Excessive tension applied to the ends of the tape measure (pull).

After determining the error, taping actual distance (d) for a measured line can be obtained by
incorporating corrections (c) of the measured distance (md):

d:md+Zc (5.8)

5.12.1 Length calibration of taping

When measuring a given distance with a longer taping, the sufficient length for the measurement
will not be obtained and a positive correction must be made. That is, if the tape measure is
longer, fewer lengths of taping are used to measure a distance than would be required for a
shorter taping of the correct size. For a shorter taping, the reverse is true. Therefore, when a
distance is measured with taping and the wrong tape size is subsequently found, we can adopt
the rule that for a longer taping we should add a distance correction, and for a shorter taping we
should subtract the correction value. However, care must be taken with this rule in the situation
where you plan to measure a distance with a longer or shorter taping but still make the correct
measurement. In this case, the rule is reversed so that when you plan to use a shorter taping
you must add a correction factor and for a longer taping you must subtract a correction factor
(McCormac, 2007; Alves and Silva, 2016).

An error caused by incorrect length of taping (C) (m) can be determined by (Ghilani and Wolf,

1989):

=0
l/

Cp = ( )L (5.9)

where [ is the actual length of the taping (m), I, the nominal length of the taping (m) and, L,
the recorded measure of the total line length (m).

5.12.2 Temperature variations

Changes in taping length caused by temperature variations can be significant. For precision work,
a temperature change of approximately 5°C will cause a length change of approximately 0.002 m
on a 30 m taping. If a tape measure was used at 9°C to define a distance of 1000 m, and if the
distance was checked the following summer with the same tape measure when the temperature
reached 38°C, there will be a difference in length of 0.34 m caused by temperature change. The
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coefficient of linear expansion of the steel taping is 0.0000116°C. Thus, the correction of taping for
temperature changes (Cp) is (McCormac, 2007; Ghilani and Wolf, 1989; Alves and Silva, 2016):

Cp = k(T, —T)L (5.10)

where k is the thermal coefficient of taping expansion and contraction, 7}, the estimated temper-
ature (°C) at the time of measurement, 7', the taping temperature (°C) under standard length
conditions and, L, the observed line length (m).

Errors caused by temperature changes can be virtually eliminated by taking temperature mea-
surements or using an Invar tape measure. Invar lengths have a very small coefficient of expansion
and were useful for precise distance measurement work (McCormac, 2007).

5.12.3 Corrections for slope and horizontal alignment

Most of the taping measurements are performed keeping the tape in a horizontal position, avoiding
the need to make corrections due to the slope of the terrain. However, taking several measurements
in small sections can lead to an accumulation of random errors, reducing the accuracy of the
measurement. Therefore, instead of segmenting the line into several segments, it may be more
advantageous to measure the length of the slope and then calculate the difference in elevation (d)
or the height angle («). If the angle « is determined, the horizontal distance (H) between two
vertices can be calculated using the relation (McCormac, 2007; Alves and Silva, 2016):

H = Lcosa (5.11)

where L is the length of the slope (m) between the points and « the height angle (°) from
the horizontal plane, usually obtained by clinometer or theodolite. If the elevation difference, d,
between the two points is known, the horizontal distance can be calculated by the Pythagorean
theorem (Ghilani and Wolf, 1989; Alves and Silva, 2016):

H=VI2—d (5.12)

Another approximate equation obtained by expanding the Pythagorean theorem can be used in
lower order surveys. Considering, ¢, the correction factor caused by the horizontal alignment or
off-line alignment error and, L — ¢, the horizontal distance, H is (Garcia and Piedade, 1987;
Ghilani and Wolf, 1989; Alves and Silva, 2016) (Figure 5.11):

(L—c)?+d?=L? (5.13)

L?—2Lc+c?+d*> = L2 (5.14)

In practice, the ¢? term can be neglected,

2Lc = d? (5.15)
d2

With this, the corrected horizontal distance can be obtained by (Ghilani and Wolf, 1989):
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d2
H=L—— 5.17
where & is a vertical offset correction to be subtracted from the slope measurement to obtain

2L
the horizontal distance. This method is useful for obtaining quick estimates without complicated

calculations or errors produced by large variations in slope.

Corrections for errors caused by taping inclination in the vertical plane can be calculated in the
same way as horizontal alignment errors. This type of error has been found to be systematic and
can be eliminated by careful alignment (Ghilani and Wolf, 1989).

5.12.4 Pull corrections

When a tape measure is stretched to a greater than standard tension, the length of the tape
measure will be greater than the standard length. The modulus of elasticity of the tape regulates
the possible amount of stretch. The pull correction (C'p) is the positive correction of the total
elongation of the tape length as a result of the tension (m) and can be calculated by (Ghilani and
Wolf, 1989; Alves and Silva, 2016):

Cp = (P~ P) 1 (5.18)

where P, is the pull applied to the tape at the moment of observation (kg), P, the standard
tension (kg), A, the cross-sectional area (cm?), L, the length of the observed line (m) and, F,
the modulus of elasticity of the steel (kg cm~2). Taping cross-sectional area can be obtained by
the manufacturer information, by measuring the width and thickness or by the ratio between the

total tape weight, length and unit weight of the steel.

5.12.5 Sag corrections

When a steel tape measure is held by the ends only, a curvature of the tape measure known as
“sag” (catenary) is formed (Figure 5.12). The occurrence of sag determines a greater horizontal
distance, because the distance recorded on the tape is greater than the distance between the two
ends. The sag error (Cg) is the negative value of the catenary correction (m) and can be corrected
by the equation (McCormac et al., 2012; Alves and Silva, 2016):

WP
57 4p?

(5.19)

where Lg is the observed length (m) and, W is the taping weight (Kg m™!). The sag can be
reduced by applying greater tension at the ends and surveying at shorter intervals.

Laser interferometers and yaw sensors are currently being used to evaluate taping errors in cali-
bration laboratories. A new yaw sensor has been designed to determine the error characteristics
of measuring tapes. The results of a yaw error measurement sensor compared to a laser interfer-
ometer angle measurement system were satisfactory (Chinchusak and Tipsuwanporn, 2018).

The quality of an underwater archaeological survey with fiberglass taping was comparatively
evaluated with 3D trilateration. Accuracy of 25 mm was observed in the measurements with
taping. In the 304 measurements taken during testing, there was 20% error (Holt, 2003). This
method of 3D trilateration has been used in marine archaeology (Rule, 1989) and the process of
distance measurement was similar to measurements made by global positioning system receivers
(UKOOA, 1994) and underwater acoustic positioning systems (Kelland, 1994).
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FIGURE 5.11: Correction of errors caused by taping inclination (not horizontal) (top) and
off-line alignment (bottom).
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FIGURE 5.12: Catenary effect (sag) by low tension pull on the tape measure, making the
observation larger than the distance between 2 points (top), and high tension pull applied to the
diastimeter by the ends making the distance smaller than the distance between 2 points (bottom).

5.13 Summary of Errors in Taping Survey

The errors caused by surveying with a tape measure are classified as Natural (N), Instrumental (I),
Human (H), Systematic (S) and Random (R). To reduce errors in precision work, we recommended
that the same line be surveyed with different tapes at different times of the day and in alternate
positions. An accuracy of 1/10000 can be obtained with attention to details of the survey (Table
5.2) (Ghilani and Wolf, 1989; McCormac et al., 2012; Alves and Silva, 2016).
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TABLE 5.2: Summary of errors in taping surveying.

Instrumental (I),

Natural (N), Systematic (S),

Error Type Human (H) Random (R) Error Magnitude
Tape length I S 0.0l m
Temperature N S, R 20° C
Pull I S, R 20 kg

Sag N, H S 20 cm at center

Alignment H S 1.1 m at one end

Unleveled tape H S 1.1 m elevation difference
between ends of tape
Plumbing H R 0.01 m
Marking H R 0.01 m
Reading H R 0.01 m
|

5.14 Computation

As a computing practice, we proposed to draw a polygon in an area of 10 & 10 m based on taping
measurements. Determine the angles of the vertices and the polygon area based on measurements
taken with a diastimeter within this area. The angles are first determined by the R package
LearnGeom (Briz-Redon and Serrano-Aroca, 2020) and then a check of the determined angles by
the law of cosine is made using the package circular (Lund et al., 2017b). Finally, the area of
the polygon is calculated and checked by the semiperimeter and the method of known angles.

5.14.1 Installing R packages

The -install.packages function is used to install the circular and LearnGeom packages in the R
console.

install.packages('"LearnGeom")
install.packages('"circular")

5.14.2 Enmnabling R packages

The library function is used to enable the circular and LearnGeom packages.

library(LearnGeom)
library(circular)
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5.14.2.1 Define z, y-axis dimensions

A plane Cartesian coordinate axis z, y with minimum and maximum values is defined to draw
the polygon measured with a diastimeter.

X_min
X_max
y_min
y_max

<- 0
<- 10
<- 0
<- 10

5.14.2.2 Draw the z, y-axis, the polygon and the angular variations of vertices of

the polygon

The planar Cartesian coordinates x, y of vertices A, B, C, D, E, F, G, H are defined based on
the field survey. The polygon with transparent interior is drawn with the bDraw and CreatePolygon
functions (Figure 5.13).

I o mmooO m >
N
1

c(1,4)
c(1,1)
c(4,1)
c(8,1)
c(8,4)
c(5,4)
c(5,8)
c(1,8)

# Defining x,y-axis

Coord

inatePlane(x_min, x_max, y_min, y_max)

# Drawing polygon inside the x,y-axis

Draw (

The i

CreatePolygon(A, B, C, D, E, F, G, H), "grey92", label=TRUE)

nternal angles of the vertices that defined the angular variations in the polygon are deter-

mined and mapped with the Angle function. In the case of the angle of vertex F', considering that
the triangle FF'G was external to the polygon, to obtain the internal angle in the polygon we
subtracted 360° (Figure 5.14).

I o Mmoo m >
N
1

c(1,4)
c(1,1)
c(4,1)
c(8,1)
c(8,4)
c(5,4)
c(5,8)
c(1,8)
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FIGURE 5.13: Defining polygonal vertices of field surveys with diastimeters.

# Defining x,y-axis

CoordinatePlane(x_min, x_max, y_min, y_max)

# Drawing polygon inside the x,y-axis
Draw(CreatePolygon(A, B, C, D, E, F, G, H), "grey92", label=FALSE)
# Mapping angles

anguloB
anguloD
anguloE
anguloF
anguloG
anguloH

Q=

Angle(A, B, C,
Angle(C, D, E,
Angle(D, E, F,
360 - Angle(E,
Angle(F, G, H,
Angle(G, H, A,

# Determining angles

anguloB
anguloD
anguloE
anguloF
anguloG
anguloH

label
label
label
F, G,
label
label

= TRUE)
= TRUE)
= TRUE)
label = TRUE)
= TRUE)
= TRUE)

10

125
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To check the angles using the cosine law, the line segments between each vertex of the polygon
are created and determined.

10

FIGURE 5.14: Definition of vertex angles of polygon surveyed in the field with diastimeter.

5.14.2.3 Define line segments

The CreateSegmentPoints function is used to create the line segments from vertices AB, BC, CD,
DE, EF, FG, GH, HA.

sAB
sBC
sCD
sDE
sEF
sFG
sGH
sHA

CreateSegmentPoints (A,
CreateSegmentPoints (B,
CreateSegmentPoints(C,
CreateSegmentPoints (D,
CreateSegmentPoints (E,
CreateSegmentPoints (F,
CreateSegmentPoints (G,
CreateSegmentPoints(H,

B)
&)
D)
E)
F)
G)
H)
A)



5.14 Computation 127

5.14.2.4 Define chord line segments

The same procedure as above is used to create the chord segments AC, CE, DF, EG, FH, GA,
in order to determine the internal angles of the polygon by the law of cosines.

SAC <- CreateSegmentPoints(A, C)
sCE <- CreateSegmentPoints(C, E)
sDF <- CreateSegmentPoints(D, F)
SEG <- CreateSegmentPoints(E, G)
sFH <- CreateSegmentPoints(F, H)
SGA <- CreateSegmentPoints(G, A)

5.14.2.5 Draw line segments

The line segments are drawn in the Cartesian coordinate plane with different colors (Figure 5.15).

# Create polygon named poly
poly<-CreatePolygon(A, B, C, D, E, F, G, H)
# Draw polygon with different colored lines
CoordinatePlane(x_min, x_max, y_min, y_max)
Draw(poly, c('"grey92"))

Draw(sAB, '"black'", label = TRUE)

Draw(sBC, '"red", label = TRUE)

Draw(sCD, "blue'", label = TRUE)

Draw(sDE, "green'", label = TRUE)

Draw(sEF, "orange'", label = TRUE)

Draw(sFG, "yellow", label = TRUE)

Draw(sGH, "brown'", label = TRUE)

Draw(sHA, "purple'", label = TRUE)

5.14.2.6 Draw line segments and the chord-like segments

The chord-like line segments are drawn in the Cartesian coordinate plane with a gray colors. We
noted that a chord is defined outside the polygon surveyed with the tape (Figure 5.16).

# Draw line segments
CoordinatePlane(x_min, x_max, y_min, y_max)
Draw(poly, c('"grey92"))

Draw(sAB, "black'", label = TRUE)
Draw(sBC, '"red", label = TRUE)
Draw(sCD, "blue", label = TRUE)
Draw(sDE, '"green'", label = TRUE)
Draw(sEF, "orange'", label = TRUE)
Draw(sFG, "yellow", label = TRUE)
Draw(sGH, "brown'", label = TRUE)
Draw(sHA, '"purple'", label = TRUE)
# Draw chord segments
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FIGURE 5.15: Determination of line segments with different colors between vertices of polygon

surveyed in the field with diastimeter.

Draw(sAC, '"gray", Tlabel

Draw(sCE, '"gray", Tlabel

Draw(sDF, '"gray", Tlabel

Draw(sEG, '"gray", Tlabel

Draw(sFH, "gray", label

Draw(sGA, '"gray", Tlabel

TRUE)
TRUE)
TRUE)
TRUE)
TRUE)
TRUE)

5.14.2.7 Determine the length of each line segment

Lengths of line segments AB, BC, CD, DE, EF, FG, GH, HA are determined with the Distan-

cePoints function.

AB
BC
CcD
DE

<- DistancePoints(A,
<- DistancePoints(B,
<- DistancePoints(C,
<- DistancePoints(D,

B)
0
D)
E)
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10

FIGURE 5.16: Determination of chord-like segments between vertices of polygon surveyed in
the field with diastimeter.

EF <- DistancePoints(E, F)
FG <- DistancePoints(F, G)
GH <- DistancePoints(G, H)
HA <- DistancePoints(H, A)
AB

## distance
#it 3

BC

## distance
##t 3
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CD

## distance
#it 4

DE

## distance
## 3

EF

## distance
#i 3

FG

## distance
## 4

GH

## distance
H#it 4

HA

## distance
## 4

5.14.2.8 Determine the length of the chord segments

Lengths of chord-type line segments AC, CE, DF, EG, FH, GA are determined with the Dis-

tancePoints function.

AC <- DistancePoints(A, C)
CE <- DistancePoints(C, E)
DF <- DistancePoints(D, F)
EG <- DistancePoints(E, G)
FH <- DistancePoints(F, H)
GA <- DistancePoints(G, A)
AC
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## distance
## 4.242641

CE

## distance
H#it 5

DF

## distance
##t 4.242641

EG

## distance
## 5

FH

## distance
## 5.656854

GA

## distance
## 5.656854

5.14.2.9 Determine the polygon angles by the law of cosine

131

The cosine and arc cosine of triangles B, C, D, E, F, G, H sides opposite the angles of interest

are determined by the law of cosines and deg and acos functions, respectively.

# Determine
cosB<-(AB*2
cosD<-(CD"2
cosE<-(DE~2
cosF<-(EFA2
cosG<—-(FG~*2

cosines of sides of triangles opposite to the angles

BCA2
DE~2
E[FA2
FG"2
GH”2

ACA2) / (2xAB*BC)
CEA2) / (2*CD*DE)
DFA2) / (2*DE*EF)
EGA2) / (2%EF*FG)
FHA2) / (2%FG*GH)
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cosH<-(GHA2 + HAA2 - GAM2)/(2*GH*HA)

# Determine the arc cosine of angles in degrees
acosB<-deg(acos(cosB))

acosD<-deg(acos(cosD))

acosE<-deg(acos(cosE))

acosF<-deg(acos(cosF))

acosG<-deg(acos(cosG))

acosH<-deg(acos(cosH))

acosB

## distance
#it 90

acosD

## distance
## 90

acosE

## distance
#it 90

acosF

## distance
#it 90

acosG

## distance
## 90

acosH

## distance
##t 90
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5.14.3 Determine the polygonal area by the semiperimeter method consider-
ing the vertices A, B, C, D, £, F, G, H

The polygon area is defined by the triangles BFD, DEF, FGH, HF B. Since the heights of these
triangles are not known, the semiperimeter method method is used to determine each triangle
area. The sum of each triangle area is used to obtain the total polygon area.

# The polygonal area is defined by triangles BFD, DEF, FGH, and HFB
# Determine distances

HF <- DistancePoints(H, F)

BF <- DistancePoints(B, F)

BD <- BC+CD

HB <- HA + AB

# Determine semiperimeter of each triangle within the polygon
BFD <- (BD + DF + BF) / 2

DEF <- (DE + EF + DF) / 2

FGH <- (FG + GH + HF) / 2

HFB <- (BF + HF + HB) / 2

areaBFD <- sqrt(BFD*(BFD - BD)*(BFD - DF)*(BFD - BF))
areaDEF <- sqrt(DEFx(DEF - DE)*(DEF - EF)*(DEF - DF))
areaFGH <- sqrt(FGH*(FGH - FG)*(FGH - GH)*(FGH - HF))
areaHFB <- sqrt(HFB*(HFB - BF)*(HFB - HF)*(HFB - HB))

areaBFD

## distance
H#it 10.5

areaDEF

## distance
## 4.5

areaFGH

## distance
#it 8

areaHFB

## distance
#it 14
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areaABCDEFGH<-sum(areaBFD, areaDEF, areaFGH, areaHFB)
areaABCDEFGH

## [1] 37

The angles of triangles BF D, DEF, FGH, HF B are determined to calculate the polygon total
area by the angular method. After the summation of each triangle area, the same area value
obtained by both methods is observed.

# Check calculated area using angles
# Determine interior angles of vertices defining the polygon area
anguloBFD <- Angle(B, F, D)
anguloBFH <- Angle(B, F, H)
anguloFGH <- Angle(F, G, H)
anguloDEF <- Angle(D, E, F)

Al <- 0.5%*BF*DFxsin(rad(anguloBFD))
A2 <- 0.5%BF*HF*sin(rad(anguloBFH))
A3 <- 0.5%FG*GHxsin(rad(anguloFGH))
A4 <- 0.5*DE*EF*sin(rad(anguloDEF))
area<-sum(Al, A2, A3, A4)

area
## [1] 37
# check ok!

Based on this computation practice, we demonstrated that distance determinations from field
measurements made with tape can be mapped and used to calculate angles and the area of closed
polygons that are frequently used in surveys of small regions with low-cost geomatics equipment.

5.15 Solved Exercises
5.15.1 On a surveying with taping, the temperature and pull corrections:

Can show the same sign. [X]
Always present the same sign.
Always have opposite signs.
Always have positive signs.

o op

5.15.2 The correction of slope on sloping terrain:

Is positive.

Is negative. [X]

Can be positive or negative.
Is zero.

o op
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5.15.3 If two points A and B are 55 m apart and have an elevation difference
of 0.5 m, the slope correction of the measured length is:

+0.0008 m.
-0.0022 m. [X]
-0.0125 m.
+0.0010 m.

o o

#H=L-d2/2L
L=55

d=0.5
d2=dnr2
LL=2*L
c=-1%(d2/LL)
©

## [1] -0.002272727

#or

H=sqrt ((LA2)- (dr2))
c<-H-55

c

## [1] -0.002272774

5.15.4 After performing a topographical survey with a 30 m steel tape, stan-
dardized at 20°C, pulled with 5.45 kg tension, we found that the real
length of the tape was 30.012 m. The tape was stretched horizontally
with a constant pull at the ends of 9.09 kg, while measuring a line
from A to B, with 3 segments (Table 5.3). Apply the corrections for
tape measure calibration, temperature, pull, sag, in order to determine
the correct length of the distance measured from vertices A to D.

Required Information:

o The cross-sectional area of the tape measure: 0.050 cm?;

o Weight of the tape measure: 0.03967 kg m~!;

e Thermal coefficient of expansion and contraction of the tape: 0.0000116;
o Modulus of elasticity of steel: 2,000,000 kg cm™2.
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TABLE 5.3: Field notes of a line measured with a steel tape.

Section Recorded Distance (m) Temperature (° C)

A-B 30.000 14.000
B-C 30.000 15.000
C-D 21.151 16.000

A: The calibration of the line length is obtained by:

CL<-((30.012-30)/30)*81.151
CL

## [1] 0.0324604

The temperature corrections for each segment are:

CTAB<-0.0000116*(14-20)*30
CTAB

## [1] -0.002088

CTBC<-0.0000116*(15-20) *30
CTBC

## [1] -0.00174

CTCD<-0.0000116* (16-20)*21.151
CTCD

## [1] -0.0009814064

SCT<-sum(CTAB, CTBC, CTCD)
SCT

## [1] -0.004809406

The pull correction is:
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CP<-((9.09-5.45)/(0.05*x2000000) ) *81.151
CcpP

## [1] 0.002953896

The sag correction is:

CSAC<- -2%(((0.03967"2)*(3073))/(24*%(9.0972)))
CSAC

## [1] -0.04285279

CSCD<- -1x(((0.0396772)*(21.151"3))/(24%(9.092)))
CSCD

## [1] -0.007508931

SCS<- sum(CSAC, CSCD)
SCS

## [1] -0.05036173

The calibrated distance AD is obtained by adding all the corrections:

AD<-81.151+CL+SCT+CP+SCS
AD

## [1] 81.13124

5.16 Homework

Choose one exercise presented by the teacher and solve the question with different input val-
ues. Compare the results obtained. Use a real database measured in the field with a tape type
instrument. Determine the angles of the vertices and the polygon area.
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5.17 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 5.4.

TABLE 5.4: Slide shows and video presentations on direct distance measurement.

Guide Address for Access

1 Slides on taping measurement to define sample points'
Taping measurement with accessories?
Taping tips®
Measuring with taping in the field*
Corrections of field taping measure’
Tape and offset surveys®

S T W N

5.18 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 5.5).

TABLE 5.5: Practical and research activities used or adapted by students using direct distance
measurement.

Activity Description
1 In the content on direct distance measurement, interest may arise in doing practical
work based on the computation examples presented
2 Perform a practical activity of measuring the distance between masonry walls of a
building using taping
3 Propose a methodology of chord measurements and the cosine law to define the
internal angles of the building from measurements of the external area made with
taping

1h\:tp://www. sergeo.deg.ufla.br/geomatica/book/c5/presentation.html#/
2https://youtu.be/UMr9-SvoYVs
3https ://youtu.be/jDfpll_I904
4https ://youtu.be/BapoW7wYOyc
5https ://youtu.be/BapoW7wYQyc
Shttps://youtu.be/ndMx_tcG798
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5.19 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Direct Distance and Angle Measurements with Geomatics
and R”, on a single A4 page in order to show the student’s abilities to summarize a subject
presenting key points considered of greater importance today.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com
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Stadia Indirect Measurements

6.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o How to perform indirect measurement of horizontal distance and level difference between two
points with mechanical optical instruments on plane or sloping terrain.

o How to calculate distances by stadimetric equation in R.

o How to create a planimetric database in R.

e How to export planimetric measurement results from R.

6.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Perform indirect measurement of horizontal distance and level difference between two points
with mechanical optical instruments on flat or sloping terrain.

¢ Calculate distances by stadimetric equation in R.

e Create a planimetric database in R.

o Export planimetric measurement results from R.

6.3 Introduction

Optical and mechanical indirect distance meters are called “tachymeters” or “tacheometers”.
Tachymetry is the procedure by which horizontal distances and elevation differences are deter-
mined using optical properties of a telescope and a measuring instrument, transit, theodolite,
level, or tachymeter. The method has long been recognized as a simple and inexpensive tool for
mapping areas of limited extent (Ali, 1995).

Indirect distance measurements are established using conventional optical instruments in stadime-
ter. Speed and accuracy are the great advantages of tacheometric surveys over direct distance
measurement processes, as all measurements are performed by the instrument operator himself.
The operator and assistant must be trained in the use and installation of the stadia, also known as
“stadia rod”. The assistant must install the stadia rod correctly on the point and keep it vertical
(leveled) and without moving during the reading of the stadia lines (Alves and Silva, 2016).
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6.4 Indirect Distance Measurement with Mechanical Optical Instru-
ments

Indirect measurement with a theodolite by means of tacheometry, stadimeter or stadia is used as a
quick method to determine horizontal distance and elevation of a point. The term “tacheometry”
comes from the Greek and meant rapid measurements. The term “stadia” is the plural of the
Greek word “stadium” (McCormac et al., 2012). Historical accounts indicated that the Scotsman
James Watt was the developer of the stadimeter method in 1771 (Adrian Raymond Legault, 1956).

Stadia observations are obtained by sighting through a telescope with stadiametric lines of known
spacing inside the telescope. The apparent length intercepted at the top and bottom of the stadia
lines is read on a graduated rod or stadia rod, positioned vertically relative to the observed point.
The distance from the telescope to the stadia rod is determined by similar triangle relationships
(Ghilani and Wolf, 1989).

6.5 Indirect Distance Measurement on Flat Terrain

The difference between two readings of stadia lines intersecting a stadia rod is called “generator
number”. Stadia lines have been spaced such that at distances of 30, 60 and 80 m, the intersection
at a vertical stadia rod generated the numbers 0.3, 0.6 and 0.8 m, respectively. Therefore, to
determine a particular distance, the telescope is pointed over the stadia lines and the difference
between the upper (Fg) and lower (F}) stadia lines is multiplied generally by 100, according to
the optical equipment configuration (Barcellos, 2003) (Figure 6.1).

The stadia principle can be demonstrated from the relation of similar triangles (Barcellos, 2003):

_s o

~|®»

where S is the difference of readings on the stadia rod, f, the focal length, H, the distance to be
determined and, s, the distance of stadimeter lines.

Isolating the distance (H) from the previous equation,

_f
H=:5 (6.2)

Considering the relationship between the focal length (f) and the spacing of the reticle’s lines (s),
we have % = 100:

where Fg is the reading from the upper stadia line and, F7j, the reading from the lower stadia
line.

Replacing S into the equation to determine distance,

H = 100(Fg — F}) (6.4)
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FIGURE 6.1: Indirect measurement of distances in the horizontal plane using conventional
optical instruments (mechanical optical theodolites and levels).

The readings Fg and F; are measured by a stadia rod, usually 3 or 4 m long, on which the
meters, decimeters and centimeters are read directly and the millimeters estimated (Figure 6.2)
(Barcellos, 2003).

I
6.6 Indirect Distance Measurement on Slant Terrain
When working on a sloping terrain, the vertical angle is used to calculate the horizontal compo-

nent of the slant distance, as well as to determine the difference in height between two points
(McCormac et al., 2012) (Figure 6.3).

In this case, the difference between the upper and lower stadia lines in the inclined measurement
(Fg — Fy); is defined by:

(Fs — Fp); = (Fg — Fi)cosa (6.5)
The slant distance (L) can be obtained by:
L =100(Fy — F)), (6.6)

By substituting the L value into the equation H = Lcosa, we can define the slant distance
measurement, for a height angle o by (Barcellos, 2003):
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FIGURE 6.2: Reading system on stadia rod.

H = 100(Fg — F})cosa (6.7)

Similarly, the slant distance measurement for a zenith angle (z) can be obtained by (Barcellos,
2003):

H =100(Fg — Fy)sen?z (6.8)

Ali (1995) evaluated the accuracy of five optical theodolites, Wild T16, T1, T2, Kern DKM-1,
DKM-2 and an automatic level, Wild NA2, tested for horizontal distance and height accuracy
measurement. In application areas with horizontal accuracy of approximately 4+ 30 mm in 100 m
modern optical theodolites and levels suitable for the job were required and used as an alternative
electronic distance measurement.

Similarly, Ali (2001) evaluated six simple electronic digital theodolites, three Sokkia instruments
(DT6, DT5 and DT2), a Topon DT20, a Zeiss ETh4 and a Leica T1600, used comparatively in
horizontal distance and level difference measurement using stadia lines etched into the telescope
reticule of these theodolites. In both cases, semi electronic tacheometry provided much better
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FIGURE 6.3: Reading stadia rod with slant theodolite sighting.

accuracy values (two to three times) than conventional optical surveying techniques. The high
accuracy was probably attributed in part to the repeated measurements and the improved design
of electronic theodolites used in the test. The range of accuracy values obtained was compatible
with the requirements of surveying performed in civil, agricultural, and environmental engineering
and other localized surveys that require positional accuracy values with moderate accuracy.

Methods for surveying and analyzing channels using topography were compared with a hand held
stadiametric level, a laser distance meter, and a real-time kinematic global navigation satellite
system (RTK-GNSS). The accuracy of this equipment was compared in determining slope and
roughness of the small, dry and steep channel bed. The variability between four operators for
each technique was also evaluated. The RTK-GNSS data was used as an accuracy reference. The
inter-operator variability was found to be very low (coefficients of variation between 0.001 and
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0.046) for most of the systems evaluated, except for the one-person laser measurement system.
With two people performing the survey, the laser measurement method was as accurate as the
level but provided advantages in difficult survey conditions, despite higher cost (Scott et al., 2016).

6.7 Computation

As a computation practice, we suggest to use field survey data of distances in a soccer field from
the center to the edges in order to practice the creation of a data.frame database and distance
determinations by the stadimeter equation. Merging new data into the data.frame and recording
the results in a .txt file are also practiced.

R package circular is used in the computation practice for distance determinations through
trigonometric functions (Jammalamadaka and SenGupta, 2001; Lund et al., 2017a).

6.7.1 Installing R packages

The install.packages function is used to install the circular package in the R console.

## install.packages("circular")

6.7.2 Enmabling R packages

The library function is used to enable the circular package in the R console.

library(circular)

6.7.3 Import field notes from theodolite survey

Field note data of theodolite irradiation survey on a soccer field from the center of the field (O)
to the borders (A, B, ..., M) are described with the following columns: ID = vertex ID; Az =
Zenith angle in decimal degrees; AH = Horizontal angle in decimal degrees; F; = Lower stadia
line in mm; Fg = Upper stadia line in mm. The data.frame function is used to organize the
readings taken in the topographic survey.

irr<-data.frame(ID=c('OA', 'OB', 'OC', 'OD', 'OE', 'OF', '0G', 'OH',
'oI', '0J', 'oL', 'OM'),

AZ=c(90.7639, 90.9000, 91.3889, 91.1444, 90.8778, 90.5917, 90.6528,
90.6833, 90.9361, 91.1111, 90.9444, 90.8750),

AH=c(2.4278, 21.1806, 47.6972, 164.0472, 175.1028, 188.5722,
200.9833, 216.4611, 234.3111, 326.4361, 340.1611, 348.2583),

FI=c(100.0000, 100.0000, 100.0000, 100.0000, 100.0000, 200.0000,
100.0000, 100.0000, 100.0000, 100.0000, 100.0000, 100.0000),
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FS=c(845.0000, 800.0000, 590.0000, 662.0000, 810.0000, 1013.0000,
948.0000, 912.0000, 760.0000, 685.0000, 785.0000, 822.0000))

6.7.4 Determine the horizontal distance by stadia

In possession of the table organized with the readings, the distance of each alignment in meters
is determined. Therefore, the result of applying the stadimeter equation is divided by 1000.

H<-(100* (irr$FS-irr$FI)*(sin(rad(irr$AZ))"2)/1000)

6.7.5 Merging the results of calculated distances in the irradiation table

Horizontal distance determination results are joined to the original data as a new column through
the cbind function.

irr<-cbind(irr, H)

6.7.6 Export the table in .txt

Finally, the write.table function is used to export the results as a table in .txt extension for use
in further studies.

## write.table(irr, file = "E:/Aulas/Topografia/Aula5/irr.txt",
## sep = " ", row.names = TRUE, col.names = TRUE)

6.8 Solved Exercises
6.8.1 Stadia is a form of tachyometric measurement based on:

fixed generator number.

fixed generator number angulation. [X]
angular variation of the generating number.
none of the previous alternatives.

o op

6.8.2 The tacheometry survey method is generally preferred to:

provide primary control.

conduct large-scale surveys.

establish points with greater accuracy.
demarcate terrain with obstacles. [X]

o op
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6.8.3 A sight was targeted at a picket B from another picket A with altitude
equal to 584.025 m. Determine the horizontal distance between vertices
A and B.

Required information: Readings at B: F; = 0.417 m (lower stadia line), F, = 1.518 m (middle
stadia line), telescope inclination angle, o = 5°30" , descending.

A: The horizontal distance between vertices A and B is 218.1772 m.

# Horizontal distance between 2 points: H=100Scos’2alpha;S=2(Fm-F1i)
S<-2%(1.518-0.417)
)

## [1] 2.202

H<-100*S*(cos(rad(5.5))"2)
H

## [1] 218.1772

6.9 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Use a real database measured in the field with mechanical optical
instrument and stadia rod. Import the field notes in R to calculate distance with the stadia
equation. Export the obtained results in a .txt file.

6.10 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter (Table 6.1).
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TABLE 6.1: Slide shows and video presentations on stadia indirect measurements.

Guide

Address for Access

1

© 00~ O Tk Wi

Slides on indirect distance measurement with mechanical optical instruments in

geomatics'

Analog theodolite installation and leveling?
Installation and leveling of a digital theodolite in the field®
Digital theodolite measurement*

Theodolite angle and distance measurement applications®
Distance measurement with the stadia principle®.
Reading stadia lines”

Leveling with stadia®
Reading stadia rod’

6.11 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 6.2).

TABLE 6.2: Practical and research activities used or adapted by students using stadia indirect

measurements.
Activity Description
1 In the content on indirect distance measurement, you may be interested in doing
practical work based on the computational examples presented
2 Perform horizontal distance measurements in the field using theodolite and stadia
rod
3 Perform leveling difference measurements in the field using level and stadia rod

1http://www.sergeo.deg.ufla.br/geomat'ica/book/cG/presentat'ion.html#/

2https:
3https:
4https:
5https:
6https:
7https:
8https:
9https:

//youtu.
//youtu.
//youtu.
//youtu.
//youtu.
//youtu.
//youtu.

be/C78SugmLPDE
be/QUX9_1fRnlo
be/BZi0owCSsso
be/7h5CC11IY7U
be/RTdAD4hLhPo
be/wYeAEpP1NYo
be/tNRZPHLwWCT7k

//www.youtube.com/watch?v=fbwEORw1c9OY
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6.12 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Stadia Indirect Measurements with Geomatics and R”, on
a single A4 page in order to show the student’s abilities to summarize a subject presenting key
points considered of greater importance today.
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FElectronic Distance and Level Measurements

7.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o How is the development of the theory of propagation of electromagnetic energy?

o What are the principles of electronic distance measurement?

e How are electro-optical and total station instruments used in electronic horizontal and slant
distance measurements, topographic leveling, and analysis of distance measurement errors?

o What are the principles about distance measurements and topographic leveling with satellite
positioning systems (GNSS)?

e« How to evaluate the proximity between surveyed points in the field.

e How to register field survey data from sampling grid points in R.

o How to determine distance matrix in R.

e How to perform hierarchical dissimilarity cluster analysis and distance matrix dendrogram in
R.

7.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

¢ Understand the theory of electromagnetic energy propagation and the principles of electronic
distance measurement.

o Know the use of electro-optical instruments and total station in electronic measurements of
horizontal and slant distance, topographic leveling and distance errors.

o Know distance and leveling measurements with GNSS.

o Register field survey data from sampling grid points in coffee plantation in R.

o Determine distance matrix.

o Perform hierarchical cluster analysis of dissimilarity and the dendrogram of the distance matrix.

o Evaluate the proximity between the points surveyed in the field using the R package stats.

7.3 Introduction

The new generation of electronic distance measuring instruments, combining digital theodolites
and microprocessors, are called total station instruments. The measurement method is based
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on electromagnetic theory, leading to the emergence of electronic distance meters. With these
instruments, the distance is measured using the wavelength as the basic unit of measurement.
This enables one to measure the slant distance and the vertical angle, calculate the vertical and
horizontal distance components, and present the results obtained in real time (Alves and Silva,
2016).

Some equipment is configured to collect and store the field data and transmit the information to
computers, printers and other technologies, for further data processing in the office. These systems
have also been called “field-to-finish systems”, showing global acceptance, and have determined
changes in traditional surveying.

After taking measurements, the distances can be described by a distance matrix. In a distance
matrix we can obtain a number for the distance between all objects of interest and group them
by a criterion of proximity of values.

7.4 Electromagnetic Energy Propagation

From early work on the atmospheric effect on light propagation (Barrell and Sears, 1939), empirical
equations are proposed and later adapted for the calibration of electronic distance measuring
instruments.

Electronic distance measurement is based on the rate and shape of the propagation of electro-
magnetic energy in the atmosphere. The propagation rate can be expressed by (Ghilani and Wolf,
1989; Alves and Silva, 2016):

V= fA (7.1)

where V is the electromagnetic energy velocity (m s™!), f, the modulated frequency of the en-
ergy (Hz) and, A, the wavelength (m). The hertz (Hz) is the unit of frequency equal to 1 cycle
per second. The kilohertz (KHz), megahertz (MHz), gigahertz (GHz) and terahertz (THz) are
equivalent to 103, 10, 10° and 102 Hz, respectively.

The speed of electromagnetic energy in vacuum is 299,792,458 m s~ 1. The speed of electromagnetic
energy can be modified by atmospheric interference (Ghilani and Wolf, 1989; Alves and Silva,
2016):

| — (7.2)

Mg

where c is the speed of electromagnetic energy in vacuum and, n,,, the refractive index of the atmo-
sphere. The value of n, depended on the pressure and temperature, ranging from 1.0001 to 1.0005,
with average of ~1.0003. Therefore, distances obtained by accurate electronic measurements must
consider the temperature and pressure measurements in order to know n,.

Temperature, atmospheric pressure and relative humidity influence the refractive index. Since
the light source is composed of several wavelengths with different refractive indices, a set of
waves will have a joint refractive index (group). The refractive value (N,) of a group at standard
atmospheric conditions in an electronic distance measurement is (Ghilani and Wolf, 1989; Alves
and Silva, 2016):

4.8866  0.0680
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where A is the wavelength of the light (u).

Wavelengths light sources commonly used in electronic distance measurement were 0.6328 um
for red laser and 0.900 to 0.930 um for infrared laser. It should be noted that the standard air
conditions are 0.0375% carbon dioxide, temperature 0°C, pressure 760 mmHg, and 0% relative
humidity.

The refractive indice of a group in the atmosphere (n,), at the moment of observation, considering
variations in temperature, pressure and humidity, can be calculated by (Ghilani and Wolf, 1989;
Alves and Silva, 2016):

273.15 NP 11.27¢
1013.25 £+ 273.15 ¢+ 273.15

ng =1+ ( )1076 (7.4)

where e is the partial water vapor pressure (hPa) defined by temperature and relative humidity
at the time of measurement, P, the atmospheric pressure (hPa) and ¢, the dry bulb temperature
(°C). For conversion, 1 atmosphere is equivalent to 101.325 kPa or 1013.25 hPa or 760 mmHg.

The partial water vapor pressure, e (mmHg), can be calculated with satisfactory accuracy under
normal operating conditions by (Ghilani and Wolf, 1989; Alves and Silva, 2016):

c— B (7.5)

where E = 10[7-5/(237-3+0)+0.7858 and h is the relative humidity (%).

It should be noted that the effects of relative humidity on wave transmission can be ignored in
some precision work when using electronic distance meters with light in the near infrared region
(Ghilani and Wolf, 1989; Alves and Silva, 2016).

A similar empirical equation is used to calculate the atmospheric correction in ppm (Appm)
of electronic distanciometer as a function of the atmospheric pressure and the humidity of the
ambient air of propagation of electromagnetic energy (Silva and Segantine, 2015):

0.29035P 11.27h

Appm = 281.5 —
ppmm (T 0.003660) (100(273.16 )

107) (7.6)

where x = [7.5t/(237.3 +¢)] + 0.7857 and, P, the pressure (mbar).

7.5 Principles of Electronic Distance Measurement

Despite the wide variety of electronic measuring instruments available on the market, there are
basically two methods of wavelength measurement: the pulse method and the phase difference
method.

7.5.1 Pulse method

In the pulse method, a short, intensive pulse of radiation has been emitted from the transmitter
to the reflector. The reflected signal returns in a parallel path to the receiver. The distance is
calculated by the speed of the signal multiplied by the time the signal completed the round-trip
path (Figure 7.1) (Alves and Silva, 2016).
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FIGURE 7.1: Principle of the pulse method for measuring distances.

Thus, we can deduce that (Barcellos, 2003):

9L = cot (7.7)
ot

where ¢ is the propagation time of the wave between the transmitter and the reflector, i.e., the
outward and return of the signal, ¢, the speed of light in the propagating medium, and, L, the
slant distance between the instrument and the target.

Therefore, considering the speed of propagation of light in the medium of 300000 km s~!, and
an error of + 1 nanosecond (107 s) on the propagation time, will lead to an error of 15 cm in
the distance measurement. Thus, the timer used in the instrument must have high measurement
accuracy to avoid instrumental errors.

The pulse method was originated in hydrographic instruments using microwaves, but has been
adapted for systems using laser propagation of electromagnetic waves. However, the phase dif-
ference method has been applied to most instruments using electromagnetic waves in the visible,
infrared or microwave region.

7.5.2 Phase difference method

The way electromagnetic energy propagates through the atmosphere can be represented by a
sinusoidal curve (Ghilani and Wolf, 1989; Alves and Silva, 2016) (Figure 7.2).

Wavelength regions or point positions along the wavelength have been determined by phase an-
gles. A phase angle of 360° represented a full cycle, or a point at the end of a wavelength, while
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FIGURE 7.2: A wavelength of electromagnetic energy with the phase angles.

a wavelength half of 180° represented an average position. An intermediate position on the wave-
length with a phase angle of 135° is 135°/360°, or 0.375 of a wavelength. After accurately knowing
the wavelength of electromagnetic energy transmitted between two ends of a line, it is possible to
perform calibrations in order to determine the distance between points by means of a carrier.

An analog wave-shaped signal can be modulated to represent the transmitted information. Con-
sidering two instruments leveled with a plumb line, optical plumb line or laser plumb line, the
instrument at station A transmitted an electromagnetic carrier signal to station B. A precisely
tuned wavelength reference frequency is superimposed or modulated on the carrier. A reflector
at B returned the signal to the receiver, so that the path is the double distance between AB.
The modulated electromagnetic energy can be represented by a series of sine waves, each with a
wavelength A (Figure 7.3) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The distance from vertices A to B (AB) can be determined by the number of wavelengths of
the double path, multiplied by the wavelength (m), divided by 2. Since the measured distance is
not always related to an integer number of wavelengths, we expected to get wavelength fractions
when performing the measurements. Therefore, when performing a distance measurement by the
phase measurement principle, the distance L is obtained by (Ghilani and Wolf, 1989; Alves and
Silva, 2016):

n\+p
2

L=

(7.9)

where A is the wavelength, n, the number of integer wavelengths and, p, the length of the wave-
length fraction determined by the distance measuring instrument, based on the phase shift angle
of the return signal (Figure 7.4).
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Thus, it can be stated that for a wavelength of 20 m, the double distance traveled on the path
determined an effective wavelength of 10 m. This is one of the fundamental wavelengths used by
electronic distance meters that can be generated at a frequency of about 15 MHz. Equipment
must transmit additional signals at different wavelengths in order to provide measurements on
the order of a few millimeters to a few kilometers according to the instruments used (Ghilani and
Wolf, 1989).

Distance determination by the phase difference method has been applied in most instruments
using infrared, visible light or microwaves. The electronic instruments have, besides the devices
for emission and reception of the electromagnetic waves, a device to measure the phase difference
between waves. The phase difference, p, can be measured by analog and digital methods (Barcellos,
2003; Schofield et al., 2007) (Figure 7.5).

The type of modulation used in infrared instruments with electro-optical systems is the amplitude
modulation of the measurement wave by varying the carrier wave. In this case the infrared beam
can be controlled by small components, such as lenses, so that the beam transmitted by the
instrument is highly collimated (Price and Uren, 1988; Barcellos, 2003) (Figure 7.6).

7.6 Electro-optical Instruments

Electronic distance measuring instruments used tungsten or mercury lamps; however, the equip-
ment is bulky, used higher power source and short operating ranges, especially during the day, in
view of excessive atmospheric scattering. Today, most electronic distance measuring instruments
manufactured are electro-optical and transmit carrier signals with infrared or laser energy. The
intensity of these signals can be modulated directly, simplifying the equipment. The instruments
can use light derived from laser gas, and are smaller and portable, with the ability to take mea-
surements over long distances during the day as well as at night. The transmitter uses a Gallium
Arsenide (GaAs) diode that emits amplitude-modulated infrared light, being the wave source
used in most electro-optical instruments with the main advantage that the output can be directly
modulated in intensity. The radiation output is linearly related and stimulated to an applied
current and the response time is very small (Barcellos, 2003) (Figure 7.7).

A crystal oscillator is used to precisely control the frequency to be modulated. The frequency
modulation process can be associated with the passage of light through a funnel in which a
damping plate rotates at a precisely controlled rate or frequency. When the damper plate is
closed, no light passes through. Under opening of the plate, the light intensity increases up to
a maximum phase angle value of 90°, under full opening. The intensity is reduced to zero again
when the plate is closed under angle of 180°. The varying intensity and modulation amplitude is
characterized by sine waves (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The infrared beam can be variably attenuated by means of a filter disk to prevent receiver satura-
tion caused by a strong return signal (near distance). The filter disk is positioned by a motor and
controlled by a processor via an interface. Two filters cover the disk and attenuate the transmitted
and received signals, each with 50% of all attenuation. At the end of the disk track, a mechanical
stop limits the movement of the disk motor. A position detector is used for a quick setting of
the amplitude of the received signals, and also for the anti-boomerang system to set the desired
attenuation. The anti-boomerang signal occurs when a signal travels more than once the path
between the optical transmitter, reflector and optical receiver, resulting in distance error. The
position detector is a light barrier generated by an IR-Diode (LED) and a photodiode. The light
illuminates the photodiode through a wedge-shaped diaphragm located at the edge of the filter
disk circumference (Alves and Silva, 2016).
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The current caused by the light is converted to direct current at a magnitude proportional to
the actual position on the filter disk, and the voltage is read into the CPU via an AD converter.
Upon initialization of the filter system, the CPU reads the threshold values and allocates the
attenuation range to a position area from 0 to 255. This standardization is done to compensate
for the tolerances of the light barrier if one of the limit values deviates more than a set standard.
Then the accuracy of the filter’s position location is checked against some pre-established position.
If the difference is greater than a standard, there is new initialization of the motor and light barrier
(Alves and Silva, 2016).

A beam splitter divides the light emitted from the diode into two distinct signals, called the
external measurement beam and the internal reference beam. The external beam is directed to
a reflector centered at a point on the opposite side of the measured line, by means of a bezel
attached to the distance measuring instrument. A three-sided retroreflector type cube can be
used to re-direct the outer, coaxial beam to the receiver. The internal beam passes through a
variable density filter and is reduced to a level of intensity equal to that of the returned external
signal, making a more accurate measurement possible. Both the internal and external signals pass
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through an interference filter to eliminate unnecessary energy, such as sunlight. The internal and
external beams pass through analog to electrical energy conversion components, preserving the
phase shift relationships obtained during the line path between the two measured ends. A phase
metric converter is used to convert the phase difference into direct current, keeping the magnitude
proportional to the difference. This current is connected to a metric annulator, set to annul the
current. The wavelength fraction is measured during the current nullification process, converting
the distance and giving the result (Ghilani and Wolf, 1989; Alves and Silva, 2016) (Figure 7.8).

To resolve the ambiguity of the number of full cycles the wave has undergone, electronic distance
measuring instruments transmit frequencies in different modulations. For example, in an equip-
ment with four frequencies, Fy, F,, F; and F);, modulated at 14.984 and 1.4984 and 149.84 and
14.984 KHz, with a refractive index of 1.0003, the corresponding effective wavelengths are 10,
100, 1000 and 10000 m, respectively. Considering the distance of 3867.142 m presented as the
measured line result, the last four digits, 7.142 are obtained by phase shift measurement, while
the wavelength of 10 m is transmitted at frequency F). Frequency Fj, with a wavelength of 100
m, is subsequently transmitted, generating the fraction value 67.14, followed by frequency Fi,
with the value 867.1, and, F, with 3867, to complete the total value presented. With this, the
high resolution measurement, close to 0.001 m, is guaranteed by the use of the 10 m wavelength,
as well as the other wavelengths that made it possible to resolve the ambiguity when measuring
the total distance (Ghilani and Wolf, 1989; Alves and Silva, 2016).
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FIGURE 7.8: Diagram of the basic operation of an electro-optical electronic distance measuring
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In older instruments, the frequency shift and null are obtained manually by screwing the de-
vice. Modern equipment has incorporated microprocessors to control the measurement process
completely. After aiming the instrument at the reflector and starting the measurement, there is
presentation of the final distance almost instantly on the display. Other changes in modern instru-
ments have included electronic improvements to modulation amplitude control and replacement
of the metric null with an electronic phase detector. These changes have contributed significantly
to improving the accuracy of phase shift determination and reducing the number of different
frequencies required for transmission. With this, less than two frequencies have been used in
some instruments, one producing a short wavelength to obtain high-resolution digits under close
measurement and another, with a long wavelength, for measurement over large distances. Thus,
if there is no coincidence of digits measured by the two wavelengths used, modern instruments
compare the occurrence of overlap and an error message can be displayed if the numbers are
different. If the numbers are equal, the first four digits of the short wavelength and the first three
digits of the long wavelength should be considered in the reading (Ghilani and Wolf, 1989; Alves
and Silva, 2016).

Companies market sell instruments with accuracies ranging from + (1 mm + 1 ppm) to £+ (10
mm + 1 ppm). Accuracy in electronic distance measurement is divided into two parts, the first
being a constant and the second proportional to the measured distance. The unit parts per million
(ppm) is equivalent to 1 mm km~!. With this, for a distance of 5000 m, an error of 5 ppm is
equivalent to 5000 (5 €107%) or 0.025 m. Furthermore, modern instruments have combined the
digital measurement of electronic theodolites with electronic distance measurement (Ghilani and
Wolf, 1989; Alves and Silva, 2016).

7.7 Total Station Instruments

Total station instruments combine an electronic distance measuring instrument with an electronic
digital theodolite and a computer in a single unit. These devices made it possible to automatically
observe horizontal and vertical angles, horizontal and slant distance, and transmit the result to an
internal computer in real time. Height and zenith angles can also be displayed. If the instrument
is oriented in one direction and the coordinates of an occupied station are entered into the system,
the coordinates of any point targeted can be immediately obtained. This data can be stored in the
instrument or in data loggers, eliminating the manual recording process. Total station instruments
can operate in tracking mode, also called “location mode”. In this case, the required distance can
be entered from the control panel and the bezel sighted in the appropriate direction. This function
has been extremely useful in construction. Some total station instruments already have a robotic
function for motion control, imaging, scanning, and measuring without a long range prism (2000
m), and have an internal processor with an operating system (Figure 7.9) (Ghilani and Wolf,
1989; Alves and Silva, 2016).

Automatic displacement monitoring of subway tunnels can be accomplished by means of robotic
total stations and prisms as reflectors. With the use of robotic total stations it is possible to
perform highly accurate displacement monitoring by measuring angles and distances without
contact. By conducting an experiment in a tunnel, it is possible to verify the range and accuracy
under monitoring with a robotic total station. By applying the developed monitoring system to
Line 2 of the Guangzhou Metro enabled to confirm the robustness of the system (Zhou et al.,
2020).
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FIGURE 7.9: Leica Flexline TS09 plus electronic total station 1000 m range without prism.

7.8 Electronic Distance Measurement without Reflectors

In some electronic distance measuring instruments, the use of reflectors may be dispensable. These
devices use pulse time varying infrared laser signals and can take measurements in prismless mode.
However, with the use of the prism, these instruments can obtain length measurements over 3
km. The prismless mode is used to target inaccessible objects, such as construction details, faces
of dams, retaining walls, structural elements of bridges, among others. This allows for greater
survey speed and efficiency when measuring inaccessible features needed in projects (Figure 7.10)
(Ghilani and Wolf, 1989; Alves and Silva, 2016).

Other electronic instruments are available for measuring without a prism by laser interferometry,
such as electronic measuring tape. The digital laser distance measuring tape can measure from
500 mm to 50 m, with millimeter resolution (Alves and Silva, 2016).
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FIGURE 7.10: Triple (right) and single (left) prisms used to extend the capability of the
electronic distance meter.

7.9 Electronic Measurement of Horizontal Distance

All electronic distance measuring devices measure the slant distance between two stations. The
conversion from slant distance to horizontal distance can be based on elevation differences or
zenith or vertical angles. Long distances must be treated by different ways, in view of the Earth’s
curvature. The horizontal distance calculation is performed internally by a microprocessor, but can
be performed manually. Before performing the conversion to horizontal distance, the instrumental
and atmospheric errors of the slant distance must be corrected (Ghilani and Wolf, 1989; Alves
and Silva, 2016).

7.9.1 Horizontal distance correction by elevation difference

If elevation difference is used to calculate horizontal distance in field operations, the altitude of
the electronic distance measuring instrument (h,.) and reflector (h,) are measured and recorded.
If the elevations between points A and B are known, the slope distance length will be converted
into horizontal distance based on the value of the height difference between the instrument and
the reflector (d) (Ghilani and Wolf, 1989; Alves and Silva, 2016) (Figure 7.11):

d = (elevy + h,) — (elevg + h,.) (7.10)
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FIGURE 7.11: Conversion from slant distance to horizontal distance by means of an electronic
distance meter.

7.9.2 Horizontal distance correction by vertical angles

If the zenith angle (z) is observed relative to the inclined path of the transmitted energy when
measuring the slant distance L, then the horizontal distance can be obtained by (Ghilani and
Wolf, 1989; Alves and Silva, 2016):

H = Lsen(z) (7.11)

If the vertical angle « is observed, the equation H = Lcosa can be used in the conversion. In
the case of no angle observation, the equation H = v/ L2 — d? can be an alternative to determine
the horizontal distance. In precision studies, vertical or height angles should be observed in the
forward and reverse directions, followed by averaging the observations. The mean obtained from
both ends will be used to compensate for the effect of curvature and refraction.
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7.10 Digital Leveling

The digital level is an instrument that uses digital image processing to read a barcoded staff.
The instrument outputs a signal pattern on a vertical ruler, and a correlation procedure in the
instrument translates the reading into horizontal and vertical distance from the instrument to the
levelling staff. The detector is a type of charge-coupled device (CCD) camera that transforms the
black and white barcode into a binary code. The aperture angle of the instrument is very small, on
the order of 1 to 2°; resulting in the imaging of a small section at close range and a larger section
at maximum distance. The data are stored in the instrument in order to eliminate mistakes. The
instrument is also affected by focus, vibrations, lighting, location of barcode coverage, collimation,
and physical damage if pointed at the sun. The resolution of most of the instruments is 0.1 mm
for height and 10 mm for distance, in measurements up to 100 m (Schofield et al., 2007) (Figure
7.12).

7.11 Distance and Level Measurements with GNSS

Global Navigation Satellite System (GNSS) enable to obtain coordinates of points based on elec-
tromagnetic waves measurements. The distance is obtained from a relative vector between the
receiving antennas, transported to the topographic points on the terrain. The vector of distance
calculated by the coordinates is equal to the slope distance between the points. Accuracies greater
than 4+ (5 mm + 2 ppm) can be obtained according to the instrument used, method of point posi-
tioning, satellite geometry at the time the data are obtained, and the methods of data adjustment
and processing (Silva and Segantine, 2015).

For leveling with GNSS technology, point height values can be obtained by surveying in relative
mode, post-processed or real-time kinematic (RTK) and under favorable conditions achieving
centimeter and even millimeter accuracy. If leveling is performed in differential mode RTK, the
survey is fast compared to other methods, but there may be accuracy degradation according to the
satellites’ geometry, the effects of the troposphere and ionosphere and the geoidal height variation.
Additional information must be used to correct the values of the ellipsoidal heights measured by
GNSS receiver antennas. If the altitude value of the point where the installed GNSS base receiver
is known, this value indicates the geometric height at the other points measured with the remote
receiver (rover). The heights will be related to the altitude value measured at the base. This
procedure can be useful in regions with little variation in geoidal undulation. Other options may
use a geoidal model incorporated in the GNSS processing software. We should be careful when
choosing the global geoidal model because of data inconsistency in specific regions or estimation
of geoid waves for other points by linear interpolation from points with known altitudes (Silva
and Segantine, 2015).

7.12 Laser Leveling

Laser leveling can be used to generate a leveling plane by means of a visible laser beam that
continuously rotates around a vertical axis that coincides with the vertical of the site. This en-
ables an operator to determine height differences with a graduated staff between points in the
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FIGURE 7.12: ZDL700 level with 3-second digital readout on double-sided levelling rod, accu-
racy of 0.7 mm per km, aluminum tripod.

survey region. A vertical, inclined or horizontal plane can be determined with laser leveling in the
following applications (Silva and Segantine, 2015):

Control of earthwork and excavation;
Slope control;

Ramp construction;

Alignment and concreting control;
Alignment tracing;

Location and leveling gauge;
Alignment of the facade;

Leveling pre-cast slab.
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7.13 Errors in Electronic Distance Measurement

Electronic measurement errors can be constant and scalar proportional to the observed distance.
The constant error is the most significant at short distances. At large distances, the constant error
becomes negligible and the proportional part is more important. The largest error components at
an observed distance are the lack of centering of the instrument and reflector, the constant, and
scalar errors of the distance measuring instrument. The error in a measured distance (E;) can be
obtained by (Ghilani and Wolf, 1989; Alves and Silva, 2016):

By =+\/E? + E2 + E2 + (ppmL)? (7.12)

where Ej; is the estimated centering error of the instrument, £, the estimated centering error of
the reflector, E_, the specified constant error of the equipment, ppm, the specified scalar error of
the equipment, and, L, the measured slant distance.

When working with electronic distance measuring instruments, the sources of error can be human,
instrumental, or natural (Alves and Silva, 2016).

7.13.1 Human errors in electronic distance measurement

Human errors in electronic distance measurement are related to (Alves and Silva, 2016):

e Improper configuration of instruments and reflectors;
e Incorrect measurement of instrument height and reflectors;
e Incorrect determination of atmospheric pressure and temperature.

These errors are random and can be minimized by careful work and use of quality barometers and
thermometers. Mistakes in manual reading and recording can be common and costly. These errors
can be eliminated by using data collection instruments and taking readings in different units for
later comparison (Ghilani and Wolf, 1989; Alves and Silva, 2016).

An example of a common mistake can occur when setting the temperature and pressure of the
electronic distance measuring instrument before taking the measurement. Consider the example
of the refractive index calculated to be 1.0002672. If the effective wavelength for a standard
atmosphere is 10 m, then the actual wavelength produced by the electronic meter is 10/1.0002672
= 9.9973 m. For an observed distance of 827.329 m, the error is -0.221 m:

9.9973 — 10

e= ("5 )827.320 = —0.221 m (7.13)

# Wavelength
lambda<-10
lambda

## [1] 10
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# Current Wavelength
la<-lambda/1.0002672
la

## [1] 9.997329

# Error in distance
e<-((la-lambda) /lambda) *827.329
e

## [1] -0.2210033

In this case, the effect of the failure to consider the current atmospheric condition, determined an
accuracy (pr) of 1 m on 3743 m surveyed (1:3743):

pr<-(1/(0.221/827.329))
pr

## [1] 3743.57

7.13.2 Instrumental errors in electronic distance measurement

If an electronic distance measuring instrument is carefully adjusted and precisely calibrated,
the instrumental errors will be small. To ensure accuracy and reliability, instruments should be
checked against a first-order baseline at regular time intervals. Although the instruments are
stable, occasionally the generation of wrong frequencies and improper tuning can occur. This
will result in wavelengths that degrade the distance measurement in a similar way to using an
incorrectly sized taping. Periodically checking the equipment against a calibrated baseline will
make it possible to check for observation errors. The cubic corner reflectors are another source
of instrumental error. Considering that light passes through glass at a slower speed than air,
the effective center of the reflector will be behind the prism, not coinciding with the plumb line
and causing the systematic error known as constant reflection. Considering that the reflector is
composed of perpendicular faces, the light always crosses the total distance in the prism according
to (Figure 7.13)(Ghilani and Wolf, 1989; Alves and Silva, 2016):

a+b+c=2D (7.14)

For a refractive index value of glass (n), which is higher than air, the speed of light in the prism
is reduced to generate an effective distance (DE) of:

DE =nD (7.15)

where n is the refractive index of the glass, of approximately 1.517 and, D, the prism depth.
Under these conditions, for D = 40 mm, nD is 60.68 mm:
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FIGURE 7.13: Schematic diagram of a reflector, where D is the prism depth.

D<-40
DE<-1.517*D
DE

## [1] 60.68

This enabled to determine the effective center and the reflector constant (K) of 20.68 mm:

K=DE—-D (7.16)

K<-DE-D

## [1] 20.68
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The electric center of the electronic distance measuring instrument can be changed to a compen-
sating value based on the reflector constant. However, if the measuring instrument is used with
multiple reflectors, the offset value of each reflector must be subtracted from the observed distance
to obtain the corrected values. Performing accurate baseline comparisons with observed distances
can be used to determine a constant that can then be applied to subsequent observations for
appropriate corrections. Although calibration using a baseline has been preferred, other methods
can be used (Ghilani and Wolf, 1989; Alves and Silva, 2016).

7.13.3 Natural errors in electronic distance measurement

Natural errors in electronic distance measuring instruments have been related primarily to at-
mospheric variations in temperature, pressure and humidity, which affect the refractive index by
modifying the wavelength of electromagnetic energy. The values of these measured variables must
be used to correct the observed distances. Although relative humidity is dispensable for correcting
distances measured with electro-optical instruments, this variable is important when microwave
instruments are used. Electronic distance measuring instruments, such as total stations, have on-
board microprocessors that make it possible to use atmospheric variables as input via keyboard,
in order to correct the distances after making the observations, but before publishing the results.
Companies have developed tables and graphs to assist in this process. The magnitude of errorin
electronic distance measurement due to atmospheric and temperature variation can be up to 50
ppm, with an error of 1 m for a distance of 200 m (Figure 7.14), depending on the equipment
used (Ghilani and Wolf, 1989; Alves and Silva, 2016).
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FIGURE 7.14: Errors in electronic instruments measuring distance as a function of temperature
and pressure or altitude.

A horizontal geodetic field calibration network(GCN) with eight stations over an area of ap-
proximately 1 km? was constructed at Zanjan University (ZNU) in Iran with the objective of
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achieving submillimeter accuracy for horizontal positions in the field calibration of total stations
and GNSS receivers. An accurate Leica TC2003 electro-optical total station was used to measure
56 distances and 48 angles. By applying the necessary corrections, reductions, and weightings of
the observations, submillimeter ellipses of 95% absolute error were obtained at all stations after
least squares adjustment. The performance of the GCN was evaluated with the Leica TC407 and
Sanding STS-750 total stations with respect to distance and angle measurements. Four pairs of
GNSS receivers of different types were also installed at the eight stations simultaneously for about
7 h for accuracy analysis (Saadati et al., 2019).

7.14 Computation

As a computation practice, we suggest to use field survey data of sampling grid points in a coffee
plantation in [jaci, MG, Cafua farm, obtained with electronic total station and GNSS. Survey
data referring to WGS-84 ellipsoid is transformed to the Universal Transverse Mercator (UTM)
coordinates, fuse 23 South, longitude (m), latitude (m) (x, y) of 67 points in the field.

Survey data is processed to obtain the distance matrix with the dist function. The Pythagorean
theorem enables to check the calculated distance. Hierarchical dissimilarity cluster analysis and
dendrogram of the distance matrix are evaluated in the surveyed points.

R package, statsis used to determine distance and statistical calculations. Other packages with
tools for building, manipulating and using distance metrics can be used, such as the distances
package (R Core Team, 2021). The distances package enables distance matrix calculation as well
as functions for fast search for nearest and farthest neighbors (Savje, 2019).

7.14.1 Installing R packages

The install.packages function is used to install the dist package in the R console. If needed,

use the same procedure to install the stat package. The stat package may already be enabled
automatically when you install R.

## install.packages ("stats")

7.14.2 Enabling R packages

If needed, enable the stats package using the library function in the R console.

library(stats)

7.14.3 Import UTM z, y coordinates of sample grid in coffee crop in Ijaci,
MG

The measurement data of x and y coordinates are organized and stored in a data.frame, with
rows and columns, with the data.frame function.
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cafuaXY<-data.frame (x=c(502391.342, 502383.37, 502380.413, 502389.239,
502395.813, 502401.896, 502407.774, 502411.07, 502407.103, 502400.745,
502393.608, 502384.541,502369.001, 502374.903, 502381.018, 502387.105,
502389.678, 502388.269, 502382.771, 502376.238, 502366.355, 502352.024,
502344.385, 502331.455, 502341.925, 502334.139, 502334.432, 502341.844,
502347.31, 502353.328, 502359.306, 502365.288, 502367.732, 502365.758,
502360.488, 502352.202, 502342.176, 502330.834, 502318.687, 502319.158,
502318.427, 502317.288, 502318.147, 502321.125, 502329.738, 502331.77,
502331.281, 502316.118, 502299.447, 502297.982, 502296.672, 502298.676,
502301.545, 502278.527, 502276.113, 502275.835, 502278.395, 502282.37,
502290.152, 502294.431, 502279.182, 502260.54, 502257.093, 502254.031,
502254.991, 502258.558, 502263.301), y=c(7659044.65, 7658996.229,
7658946.355, 7658896.643, 7658872.969, 7658847.244, 7658822.878,
7658772.253, 7658747.478, 7658723.087, 7658699.469, 7658675.575,
7658888.791, 7658864.301, 7658839.999, 7658815.871, 7658791.005,
7658765.05, 7658739.87, 7658716.772, 7658692.687, 7658667.304,
7658647.918, 7658626.147,7659029.712, 7658980.678, 7658931.335,
7658911.677, 7658887.266, 7658861.975, 7658838.756, 7658814.212,
7658788.632, 7658763.706, 7658738.782, 7658714.826, 7658691.982,
7658668.731, 7658647.124, 7659021.919, 7658996.251, 7658972.494,
7658947.615, 7658922.771, 7658872.465, 7658822.38, 7658771.981,
7658724.261, 7659016.804, 7658991.434, 7658966.875, 7658941.765,
7658917.955, 7659009.287, 7658985.377, 7658960.456, 7658935.437,
7658909.855, 7658860.141, 7658810.317, 7658759.272, 7658711.44,
7659002.1, 7658977.254, 7658952.001, 7658927.487, 7658903.01))

7.14.4 Map the points z, y and the code number of each vertex

Next, a mapping of the points is performed, including the number of each vertex registered in the
data.frame (Figure 7.15).

plot(cafuaXy)
text(cafuaXY,pos = TRUE, offset = 0.2)

7.14.5 Distance matrix calculation between points

The dist function is used to calculate a Euclidean distance matrix between the rows of the data
frame.

dis <- dist(cafuaXy)

7.14.6 Check distance between points by Pythagorean theorem

The distance between points 1 and 2 is determined to check the results, obtaining the same result
of 49.07286 m by both calculation methods.
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FIGURE 7.15: Mapping 67 georeferenced points with electronic total station at Cafua farm,
Tjaci, Minas Gerais, Brazil.
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H1_2<-sqrt((502391.342-502383.37)"2 + (7659044.65-7658996.229)"2)

7.14.7 Perform hierarchical cluster dissimilarity analysis and the distance ma-
trix dendrogram

The hierarchical dissimilarity cluster analysis and the distance matrix dendrogram are used to
evaluate the proximity between points defined with = and y coordinates, respectively (Figure
7.16).

hclust_centroid <- hclust(dis, "centroid")
plot(hclust_centroid, hang=-1)
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FIGURE 7.16: Distance cluster dendrogram between 67 points georeferenced with electronic
total station at Cafua farm, [jaci, Minas Gerais, Brazil.

The hclust function was used to perform a hierarchical cluster analysis by a set of dissimilarities
across the 67 clustered objects. Initially, each object is assigned to its own cluster, and then the
algorithm proceeded iteratively, at each stage joining the two most similar clusters, continuing
until there is only a single cluster. At each stage, the distances between clusters are re-calculated by
the Lance-Williams dissimilarity formula according to the centroid clustering method (Legendre
and Legendre, 2012).

The study of clustering of distances between points can be useful to define sampling criteria in
crops in order to optimize the data collection procedure.
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7.15 Solved Exercises

7.15.1 What is the current wavelength and velocity of a beam of light from an
electronic total station in the near infrared (A = 0.915 m), modulated
at the frequency of 320 MHz?

Required information:

Air temperature during the measurement of 34°C, relative humidity of 56% and atmospheric
pressure of 1041.25 hPa.

A: The actual wavelength of the electronic total station is 0.9366012 m.

# Data

lambda<-0.915

t<-34

h<-56

P<-1041.25

c<-299792458

f<-320%x10"6

# Refractive index of a group

Ng<-287.6155+(4.88660/ (lambda”2))+(0.0680/(lambda”4))

# Water vapor partial pressure

a<-((7.5%t)/(237.3+t))+0.7858

E<-10"a

e<-Ex(h/100)

# Refractive index in the atmosphere

na<-1+((273.15/1013.25)*((Ng*P) /(t+273.15))-
((11.27*e)/(t+273.15)))*10"-6

# Speed of light in the propagation medium

V<-c/na

# Current wavelength

lambdaa<-V/f

lambdaa

## [1] 0.9366012

7.15.2 A distance was measured with an electronic instrument in the field.
Determine the value of the atmospheric correction for the measured
distance.

Required information:

Atmosphere during measurement with air temperature of 41°C, relative humidity of 95% and
atmospheric pressure of 745 mmHg = 993 mbar.

A: The atmospheric correction for the measured distance is 33.4514 ppm.
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# Data

P<-993

t<-41

h<-95

# Calculate x

x<=((7.5%t)/(237.3+t))+0.7857

# Correction

deltappm<-281.5-((0.29035*P)/(1+0.00366*t) )+
(((11.27*h) /(100*(273.16+t)) ) *10"x)

deltappm

## [1] 33.4514

7.15.3 The wavelength used to measure a distance with an electronic instru-
ment was precisely set to be 20 m. Assuming that the phase angle of
the signal return was 115.7° and the number of integer wavelengths
equals 9, determine the length of the line.

A: The line length is 93.2138 m.

# Data
lambda<-20
phase<-115.7
n<-9

# Wavelength fraction length
p<-(phase/360)*lambda

# Total length
L<-((n*lambda)+p) /2

L

## [1] 93.21389

7.15.4 A corrected slant distance of 165.360 m was measured from A to B,
whose elevations were 447.401 m and 445.389 m above the datum,
respectively. Determine the horizontal distance of the AB line consid-
ering the instrument and reflector heights equal to 1.417 m and 1.615
m, respectively.

A: The horizontal distance between points A and B is 165.35 m.

# Data
L<-165.360
eA<-447.401
eB<-445.389
hi<-1.417
hr<-1.615
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# Level difference
d<-(eA+hi)-(eB+hr)

# Horizontal distance
HAB<-sqrt ( (L 2)-(d"2))
HAB

## [1] 165.35

7.15.5 A slant distance of 827.329 m was measured between two points with
electronic total station equipment with an error specification of + (2
mm + 2 ppm). The instrument was centered with an estimated error
of +3 mm. The estimated target centering error was + 5 mm. What is
the estimated error in the observed distance and the relative precision?

A: The estimated error in the distance is +6.3826 m with relative precision of 1:129622.

# Data

L<-827329

ppm<-2x101-6

ec<-2

ei<-3

er<-5

# Estimated error
Ed<-sqrt((eifr2)+(er”r2)+(ecr2)+((ppm*L)~r2))
Ed

## [1] 6.382624

# Precision
Pr<-(1/(Ed/L))
Pr

## [1] 129622.1

7.16 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Performe slant and horizontal distance calculation between several
points in the field with electronic total station to create a irregular grid of sampling points.
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7.17 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 7.1.

TABLE 7.1: Slide shows and video presentations on stadia indirect measurements.

Guide Address for Access

1 Slides on electronic measurement of distances in geomatics'
Electronic distance measurement?

Installation and leveling of an electronic total station on a vertex®
Electronic distance measurement with robotic electronic total station®
Electronic distance measurement’

Setting up an electronic total station®
Atmospheric correction in measurement with electronic total station”

~N O Uk W N

7.18 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 7.2).

TABLE 7.2: Practical and research activities used or adapted by students using electronic
distance measurement.

Activity Description
1 In the content on electronic distance measurement, there may be interest in doing
practical work based on the computational examples presented
2 Take angle, horizontal and slant distance measurements with an electronic total
station in the field
3 Evaluate available electronic total station distance correction options as a function

of atmospheric variation. Change the parameters and compare the results of
measured distance with repetitions

1http://www.sergeo.deg.ufla.br/geomat'ica/book/c7/presentat'ion.html#/
thtps://youtu.be/hjcCrAejJIS
3https://youtu.be/1p824ZRIWQs
4https://youtu.be/Llweue_Teqs
5https://youtu.be/SSUEwndeUI
6https://youtu.be/KSSEszpskg
Thttps://youtu.be/9AQrBKBUSTE
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7.19 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Electronic Distance and Level Measurements with Geomatics
and R”, on a single A4 page in order to show the student’s abilities to summarize a subject
presenting key points considered of greater importance today.



8

Radial Traverse Survey

8.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e What are angle and direction measurements used for in radiating polygons?

e How to perform direct and indirect calculations on measurement data from radiated polygon.

o What are radiated polygon stations?

o How to calculate bearing, azimuth and horizontal distance between radiation vertices in R
software, circular and LearnGeom packages.

8.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Observe angles and directions in radiating polygons.

o Perform direct and indirect calculations on measurement data from a radiated polygon.

e Define radiated polygon stations.

¢ Calculate bearing, azimuth and horizontal distance between radiation vertices in R software,
circular and LearnGeom packages.

8.3 Introduction

Polygonal or traverse is defined as a set of consecutive lines whose ends are demarcated in the
field and whose length and direction are determined based on observations. When establishing
polygonal lines in the field (traversing), the relative position of vertices must be determined with
details necessary to describe the area (Ghilani and Wolf, 1989; Souza, 2003; Alves and Silva,
2016).

The following phases are performed in traversing a topographic survey (Comastri and Junior,
1998; Alves and Silva, 2016):

¢ Reconnaissance, which consisted of going around the region, selecting the starting point and
the main vertices of the basic survey polygon, the necessary material and auxiliary team:;
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¢ Basic traverse, which defined the limits of the area, and can be used to evaluate uncertainties
about the surveying quality;

o Detail survey, which consisted of determining the position of points in the surveyed area to
define details needed for map representation.

Traverses can be classified into basic types, according to conformation, geometry and connection
with higher-order traverses. The main types are open-path and closed-path traverses . Closed-path
traverses are divided into the categories of polygon and link-path.

An open traverse, that is, geometrically and mathematically open, consists of a series of connected
lines that did not return to the origin point. This type of traverse does not allow checking for
observation errors and mistakes. Therefore, observations should be repeated carefully to avoid
mistakes. Wooden or steel stakes and pickets are placed at each polygon station where there is a
change of direction (Figure 8.1) (Ghilani and Wolf, 1989; Souza, 2003; Alves and Silva, 2016).

Open-Path Traversing

P o - o E— . S . . S . . . -

FIGURE 8.1: Open traverse used to demarcate access points in a residential condominium in
Cuiabd, Mato Grosso, Brazil (left) and the location of the same area on a color composition 432
Tkonos satellite image (right).

Link-path traverses start at a point of known coordinates and end at another point of known
coordinates. These polygons are geometrically open-path but mathematically closed-path, allow-
ing the verification of angles and distances measured based on points with known coordinates,
pre-existing at the beginning and end of the survey. The connecting polygon must end at another
station with accuracy equal to or better than that of the starting point (Figure 8.2) (Ghilani and
Wolf, 1989; Souza, 2003; Alves and Silva, 2016).

Polygon closed-path traverses returned to the starting point, forming a geometrically and math-
ematically closed figure. Closed-path traverses enable to check the observed angles and distances
and have been used in control, construction, property, and topographic surveys (Figure 8.3) (Ghi-
lani and Wolf, 1989; Alves and Silva, 2016).
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Link-Path Traversing 38.86°
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N 127.58°
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O Polygon Station
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X, = 672083.966 m
Y, = 8204919.79 m
X, = 673338.484 m
Y, = 8205993.719 m

69.27°\.1
7
R(+) 4

FIGURE 8.2: Traverse supported on control points A and B surveyed at Boa Vista farm, Mato
Grosso, Brazil.

8.4 Observation of Traverse Angles and Directions

The angles and directions of polygon lines can be observed by the following methods (Ghilani and
Wolf, 1989; Comastri and Junior, 1998):

Internal angles;
External angles;
Deflection angles;
Azimuths.

8.4.1 Traverses by internal angles

Traverses by internal angles are most appropriate in surveying property. Angles can be viewed
clockwise or counterclockwise; however, to reduce mistakes in reading, recording and calculation,
angles should always be read clockwise from the back station to the forward station. Internal
angles can be improved by averaging forward and backward readings. External angles can also be
read for checking (Ghilani and Wolf, 1989; Alves and Silva, 2016).
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N (Closed-Path Traversing

b
O Polygon station
OIrradiation point

FIGURE 8.3: Closed polygon used for the survey of a building at the Federal University of
Mato Grosso (left) and the location of the same area in color composition image 853 from the
WorldView-2 satellite (right).

8.4.2 Traverses by external angles

Traverses by external angles are similar to traverses by internal angles; however, you walk the
terrain clockwise, measuring the external angles of the polygon (Comastri and Junior, 1998; Alves
and Silva, 2016).

8.4.3 Traverses by angles of deflection

Route surveys have typically been performed by observed deflection angles to the right or left of
lines (Figure 8.2). A deflection angle is not complete without an indication to the right or left
of the course and should not exceed 180°. Positive and negative values can be used to designate
right and left deflection angles, respectively (Alves and Silva, 2016).

8.4.4 Traverses by azimuths

Traverses can be performed through azimuths. This process enabled reading the azimuths of all
lines directly, eliminating the need to calculate them. In practice, we determine as accurately
as possible the azimuth of the first alignment. At the next station, the azimuth of the previous
alignment is recorded on the equipment and the backsight stadia rod is sighted with the telescope
turned upside down. The telescope is placed in the normal position, and the forward mark is
sighted, obtaining the new azimuth of the forward alignment. When closing the polygon, the
equipment is reinstalled at the starting point, with the azimuth of the previous alignment set,
and operated as at the other points to obtain the azimuth again. The difference between the first
and last azimuth readings is the angular error of closure (Comastri and Junior, 1998) (Figure
8.4).
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FIGURE 8.4: Azimuth traverse used to demarcate the legal reserve area of Boa Vista 2 farm
in Santo Antonio do Leveger, Mato Grosso, Brazil.

8.5 Observation of Traverse Length

The length of each traverse line must be measured by the simplest and most economical method
that satisfies the accuracy required by the project. One advantage of measuring with an electronic
total station is that angles and distances can be observed with a single setting of each station.
Averaging of fore and aft sight distances can increase the accuracy of the survey (Ghilani and
Wolf, 1989; Alves and Silva, 2016).

8.6 Selection of Traverse Stations

Traverse stations should be located at easily accessible points. The number of stations can be
reduced with careful reconnaissance of the area. Each type of survey has specific requirements
for the location of stations. In the rural property survey, stations are placed at each vertex. In
some cases it is necessary to place stakes near the vertices and take measurements, then consider
the distance value. Distance stakes are also important in road surveys, as stakes can be destroyed
during project execution. A polygon can also be used as a control when mapping topographical
details such as roads, buildings and valleys (Ghilani and Wolf, 1989; Alves and Silva, 2016).
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8.7 Identification of Traverse Stations

Traverse stations can be re-occupied after their construction. However, it is important to create
tie-up observation points in case of destruction or new construction (Alves and Silva, 2016).

8.8 Radial Traverse

The relative position of some points can be determined by radial traverse or irradiation. Radial
polygonal survey is ideal for quickly establishing a large number of points in the area (Figure 8.5)
(Alves and Silva, 2016).

Trradiations
M

FIGURE 8.5: Radial traverse used to determine vertices of soccer field at Federal University of
Mato Grosso, from an occupied station (left) and the location of the same area in color composition
853 from a WorldView-2 satellite image (right).

8.9 Radial Traversing of a Line

Longitude and latitude coordinates values determined changes in the X,Y components of a line
in a rectangular grid system, defined by AX and AY. In traverse calculation, east longitude
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and north latitude are considered positive; west longitude and south latitude, negative. Azimuths
used in the calculation of longitude and latitude range from 0 to 360° and algebraic sign of
sine and cosine functions produces appropriate longitude and latitude values, according to the
corresponding position in a rectangular quadrant (Alves and Silva, 2016) (Figure 8.6).

N (Closed-Path Traversing

b
O Polygon station
OIrradiation point

FIGURE 8.6: Longitude and latitude of a line where H consisted of the irradiation from vertices
A to B and, «, the azimuth between these vertices.

The longitude (AX) and latitude (AY") of a line can be obtained by:

AX = Hsena (8.1)

AY = Hcosa (8.2)

where H is the horizontal length and, «, the azimuth of the alignment.

Therefore, a line with an azimuth of 125° has positive longitude and negative latitude; a line with
an azimuth of 310° has negative longitude and positive latitude. When using bearings to calculate
longitude and latitude, the angles always vary between 0 and 90°, so the sine and cosine values are
always positive. In this case, the signs for longitude and latitude must be assigned to the longitude
and latitude values. Thus, it is more convenient to use azimuth angles rather than bearing angles
in computer traverse calculations (Ghilani and Wolf, 1989; Alves and Silva, 2016).

8.10 Computation of Rectangular Coordinates

The rectangular coordinates X and Y are used to reference the position of a point perpendicular
to a reference axis. The X coordinate refers to the perpendicular distance in meters of the point
on the Y axis. The Y coordinate refers to the perpendicular distance of the point on the X axis.
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The reference of the axes characterized the position of the points, in the topographic survey. The
Y axis is oriented in the south-north position, with north determining positive values in the Y
direction. The X axis varies from east to west, with positive values on the east side (Ghilani and
Wolf, 1989; Alves and Silva, 2016).

Rectangular coordinates are useful in several calculations listed below (Ghilani and Wolf, 1989;
Alves and Silva, 2016):

¢ Determining lengths and directions of lines and angles;
o Calculating areas of land parcels;

e Performing calculations of curves;

o Locating inaccessible points;

o Plotting maps.

In practice, plane coordinate systems have usually been used as the basis for rectangular coordi-
nates from plane surveys. However, any arbitrary system can be used for some types of calcula-
tions. For example, coordinates can be arbitrarily assigned to a polygon station. We can assume as
the starting vertices of the polygon, X and Y values of 100 and 100, respectively. Using arbitrary
coordinates with positive values prevents the occurrence of negative coordinate values, according
to the magnitude defined in the arbitrary coordinates. In a closed polygon, assigning zero value
to the farthest points to the south and west can make manual calculations easier (Ghilani and
Wolf, 1989; Alves and Silva, 2016).

Given the X and Y coordinates of an initial A point, the X coordinate of the next B point is
obtained by adding longitude (AX) of the AB alignment to X 4. Similarly, Y coordinate of B is
the (AY) latitude of the AB alignment added to Y:

XB:XA+AXAB (83)

YB = YA + AYAB (84)

Wheaton et al. (2012) developed an interactive geographic information system application for
transforming non-projected total station data into real-world coordinates via three reference co-
ordinates, which can be collected by a handheld global positioning system (GPS). With the
application, we can inspect transformation options, while comparing residual error estimates to
interactively choose the best transformation. This provides a cost-effective and easy-to-use work-
flow with facilities to share and view accurate total station survey data in real-world coordinates
through a webGIS or virtual globes.

8.11 Inversing Computation

If the longitude and latitude of a line segment AB are known, the length (H), bearing (B) and
azimuth (Az) can be obtained by:

AX AY
H = AB — AB — AXQ Ayz 85
AB senAz,p  cosAz,p apt2Yip (8.5)

[AX gl
|AY |

) =ty ( ) (8.6)
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where the sign of the partial longitude and latitude determines the bearing quadrant. The quadrant
is Northeast (NE), if AX and AY > 0, Southeast (SE), if AY < 0 and AX > 0, Southwest (SW),
if AX < 0and AY < 0, and Northwest (NW), if AX < 0 and AY > 0.

AZAB = tgil( AYAB

)+ C (8.7)

where C'is 0° if AX and AY > 0; 180° if AY < 0; and 360° if AX < 0 and AY > 0.

The equations for longitude and latitude can be expressed in terms of rectangular coordinate
differences:

AX, p=Xp—X, (8.8)

8.12 Area and Perimeter Assessment

The equation for obtaining the distance between two vertices that defined the boundary of the
property can be used to determine the perimeter of a closed-path traverse, from the northernmost
vertex, to the right, to cover the entire perimeter, arriving back at the first vertex. The sum of
all the sides that defined the divisions of the property is equivalent to the perimeter (P):

P =Y "\/AX?+AY? (8.10)
n=1

The area calculation can be performed by the Cartesian coordinates of vertices matrix determinant
method, in a practical way, by arranging the coordinates of the points in two columns X and Y,
repeating the coordinates of the first point at the last point in the database. If the sequence
of points is arranged clockwise, the products indicated by upward arrows (solid line) are given
the sign (+), and those indicated by downward arrows (dashed line) are given the sign (-). If
the sequence of points is organized counterclockwise, the products indicated by ascending arrows
(solid line) will receive the sign (-), and those indicated by descending arrows (dashed line) will
receive the sign (+). With the algebraic sum of the ascending and descending products divided
by two, the area of the polygon 1 m? is obtained (Figure 8.7) (Alves and Silva, 2016).

8.13 Computation

As a computing practice, we proposed to use radial survey data of a polygon made in a soccer field
by the radiation method and propose solutions for mapping the points, determining Cartesian
coordinates of the vertices, perimeter and area of the polygon surveyed. Next, it is demonstrated
how to store the data in a table and export in a file for later use.

The circular package (Lund et al., 2017a) is used to convert angular measurements from degrees
to radians associated with trigonometry operations to determine the Cartesian coordinates of the
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FIGURE 8.7: Specificities of area calculation by the determinant method of the Cartesian coor-

dinates matrix of vertices with data registration to perform the calculation considering clockwise
or counterclockwise notation.
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vertices at the soccer field boundaries. The LearnGeom package (Jammalamadaka and SenGupta,
2001; Briz-Redon and Serrano-Aroca, 2020) is used for mapping the vertices in the surveyed
area. The area calculation is performed by matrix determinants of order two. The perimeter is
determined as a function of the calculation of alignments between vertices by the Pythagorean
theorem using LearnGeom package functions.

8.13.1 Installing R packages

The install.packages function is used to install the circular and LearnGeom packages in the R
console.

## install.packages("circular')
## install.packages ("LearnGeom')

8.13.2 Enabling R packages

The library function is used to enable the circular and LearnGeom packages in the R console.

library(circular)
library(LearnGeom)

8.13.3 Import field notes from survey

Field notes from theodolite radiation survey on a soccer field from the center of the field to
the edges are imported with the headings ID, Az, AH, F;, Fq and H, where ID is the vertex
identification number; Az, the zenith angle in decimal degrees; AH, the horizontal angle in decimal
degrees; F;, the lower stadia line (mm); Fg, the upper stadia line (mm); and H, the horizontal
distance (m).

irr<-read.table("files/irr.txt", header = TRUE, sep = " ", dec = ".")

8.13.4 Determine the partial X, Y coordinates of the polygon vertices

The partial coordinates = and y of the vertices A, B, C', D, E, F, G, H, I, J, L, M are determined
by the latitude and longitude calculation equation based on angular and distance measurements.

x<= dirr$Hx(sin(rad(irr$AH)))
y<- drr$Hx(cos(rad(irr$AH)))

8.13.5 Determine the rectangular X, Y coordinates of the polygon vertices

The rectangular X,Y coordinates of vertices A, B, C, D, E, F, G, H, I, J, L, M are determined
by adding an arbitrary value 100 to the base instrument installation point (O), X5 = 599870.71
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m; Y, = 8273913.86 m. This is done so that the final coordinates of each vertex are established
in the plane UTM coordinate system, UTM zone 218S, transformed from WGS-84 ellipsoid.

X<= 599870.71+x
Y<- 8273913.86+y

8.13.6 Merge calculated coordinate results in the irradiation table

The partial and rectangular coordinate results are merged as new columns in the irradiation table.

irr<-cbind(irr, x, y, X, Y)

8.13.7 Map the soccer field based on the rectangular X, Y coordinates

The coordinate axis with minimum and maximum values of X, Y is defined based on the minimum
and maximum values of the measurements. The CoordinatePlane function is used to draw the axis
on which the polygon is mapped. The Draw function is used with the CreatePolygon to map the
vertices of the area and the polygon is colored gray (Figure 8.8).

Assign coordinates to vertices A through M
<- c(irr$X[1],irrsy[1])
<- c(irr$X[2],irrs$Y[2])
<-= c(irr$X[3],irrs$Y[3])
<- c(irr$X[4],irrsY[4])
<= c(irr$X[5],1irrsY[5])
c(irr$X[6],irr$Y[6])
<= c(irr$X[7],irrsY[7])
<-= c(irr$X[8],irrsY[8])
<= c(irr$X[9],irrs$Y[9])
<- c(irr$x[10],irrsy[10])
<- c(irr$X[11],dirrsy[11])
<- c(irr$Xx[12],irrsy[12])

EruH IO ™mMMmMmoOOwm> &
N
|

# Set X,Y axis dimensions

Xx_min <- 599816.0

X_max <- 599908.0

y_min <- 8273830.0

y_max <- 8273990.9

# Draw the X,Y axis

CoordinatePlane(x_min, x_max, y_min, y_max)

# Draw a polygon from the vertices

Draw(CreatePolygon(A, B, C, D, E, F, G, H, I, J, L, M), "gray", label=TRUE)
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FIGURE 8.8: Mapping vertices of the soccer field by the radiation method in order to define a
closed polygon.
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8.13.8 Determine the perimeter of the soccer field as a function of the rect-
angular coordinates X, Y

The perimeter is determined using the Pythagorean theorem, and then the result was checked
by the DistancePoints function. The perimeter of the soccer field calculated by both methods is
392.2032 m.

# Calculate the perimeter

AB<=sqrt (((irr$X[2]-irr$X[1])A2)+((irr$Y[2]-irrsY[1])"2))
BC<-sqrt (((irr$X[3]-irr$X[2])A2)+((irr$Y[3]-1irrsY[2])A2))
CD<-sqrt (((irr$X[4]=irr$X[3])22)+((irr$Y[4]-irrsY[3])"2))
DE<-sqrt(((irr$X[5]-irr$X[4])22)+((irr$Y[5]-irr$Y[4])Ar2))
EF<-sqrt(((irr$X[6]-irr$X[5])A2)+((irr$Y[6]-irr$Y[5])"2))
FG<=sqrt (((irr$X[7]-irr$X[6])A2)+((irr$Y[7]-irr$Y[6])"2))
GH<=sqrt (((irr$X[8]=irrs$X[T7])A2)+((irr$Y[8]-irrs$Y[7])"2))
HI<-sqrt(((irr$X[9]=1irr$X[8])22)+((irr$Y[9]-irrs$Y[8])"2))
IJ3<-sqrt(((irr$X[10]=irr$X[9])A2)+((irrs$Y[10]-irr$Y[9])A2))
JL<=sqrt (((irr$X[11]-irr$X[10])A2)+((irr$Y[11]-irr$Y[10])"2))
LM<-sqrt (((irr$X[12]-rr$X[11])22)+((irr$Y[12]-1irrs$Y[11])A2))
MA<=-sqrt(((irr$X[12]-drr$X[1])A2)+((irr$Y[12]-drr$Y[1])"2))

# Determine the perimeter

P<-sum(AB, BC, CD, DE, EF, FG, GH, HI, IJ, JL, LM, MA)

P

## [1] 392.2032

# Or

# Determine the length of each line segment
AB <- DistancePoints(A, B)

BC <- DistancePoints(B, C)

CD <- DistancePoints(C, D)

DE <- DistancePoints(D, E)

EF <- DistancePoints(E, F)

FG <- DistancePoints(F, G)

GH <- DistancePoints(G, H)

HI <- DistancePoints(H, I)

IJ <- DistancePoints(I, J)

JL <- DistancePoints(J, L)

LM <- DistancePoints(L, M)

MA <- DistancePoints(M, A)

# Determine the perimeter

P1<-sum(AB, BC, CD, DE, EF, FG, GH, HI, IJ, JL, LM, MA)
P1

## [1] 392.2032
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# Check
isTRUE (all.equal(P, P1))

## [1] TRUE

8.13.9 Calculate the area of the soccer field by matrix determinants

Afterward, the area of the polygon was determined by the method of matrix determinants of
order two. The area obtained as a function of the radiation survey was 9779.434 m?2.

# Determine the sum of the ascending products

XOB_YOA <—irrs$X[2]*irr$Y[1]

XOC_YOB <=irr$X[3]*irrsyY[2]

XOD_YOC <-1irr$X[4]*irr$Y[3]

XOE_YOD <-irr$X[5]*irrs$Y[4]

XOF_YOE <-1irr$X[6]*irr$Y[5]

XOG_YOF <—1irr$X[7]*irrs$Y[6]

XOH_YOG <-1irr$X[8]*irr$Y[7]

XOI_YOH <-irr$X[9]*irrs$Y[8]

X0J_YOI <-1irr$X[10]*irrs$Y[9]

XOL_YO0J <-1irr$X[11]*irr$Y[10]

XOM_YOL <-irr$X[12]*irr$Y[11]

XOA_YOM <—irr$X[1]*irr$Y[12]

sumAsc<-sum(XOB_YOA, XOC_YOB, XOD_YOC, XOE_YOD, XOF_YOE, XOG_YOF,
XOH_YOG, XOI_YOH, X0J_YOI, XOL_YOJ, XOM_YOL, XOA_YOM)

sumAsc

## [1] 5.955826e+13

# Determine the sum of descendant products

XOA_YOB <-1irr$X[1]*irrs$Y[2]

XOB_YOC <-1irrs$X[2]*irr$Y[3]

XOC_YOD <-1irrs$X[3]*irrs$Y[4]

XOD_YOE <—1irrs$X[4]*irr$Y[5]

XOE_YOF <-irr$X[5]*irrs$Y[6]

XOF_YOG <-irr$X[6]*irrsY[7]

XOG_YOH <=1irrs$X[7]*irr$Y[8]

XOH_YOI <-1irr$X[8]*irrs$Y[9]

XOI_Y0J <—=irr$X[9]*irrs$Y[10]

X0J_YOL <-1irr$X[10]*irr$Y[11]

XOL_YOM <-1irr$X[11]*irr$Y[12]

XOM_YOA <-1irr$X[12]*irrs$Y[1]

sumDesc<-sum(XOA_YOB, XOB_YOC, XOC_YOD, XOD_YOE, XOE_YOF, XOF_YOG,
XOG_YOH, XOH_YOI, XOI_YOJ, X0J_YOL, XOL_YOM, XOM_YOA)

sumDesc

## [1] 5.955826e+13
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area<-( sumAsc-sumDesc) /2
area

## [1] 9779.434

8.13.10 Export the irradiation table in .txt extension

The results are exported in text file format (.txt) for later use.

write.table(irr, file = "E:/Aulas/Topografia/Aula7/irr.txt",
sep = " ", row.names = TRUE, col.names = TRUE)

8.14 Solved Exercises
8.14.1 Name the main types of traverses.

A: Open-path, closed-path, link-path and polygon traverses.

8.14.2 Cite one advantage and disadvantage of the radiation survey method.

A: Advantage: It is a quick method considering the irradiation of all vertices of a single base.
Disadvantage: It does not make it possible to circumvent obstacles in surveying areas where all
points are not intervisible between the base and the forward reading.

8.14.3 Determine the bearing and azimuth between vertices OA and OB of
the computation practice.

A: The bearing between vertices OA and OB is 67.5° SE.

# Obtain X

XA<-irrs$X[1]

XB<-irr$X[2]

# Obtain Y

YA<-irrs$Y[1]

YB<-1irrs$Y[2]

# Determine the longitude and latitude
dX<-XB-XA

dXx

## [1] 22.13009
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dY<-YB-YA
dy

## [1] -9.164768

# Determine the bearing
r<-deg(atan(dx/dy))
-

## [1] -67.50401

8.14.4 Determine the azimuth between vertices OA and OB of the computation
practice.

A: The azimuth between vertices OA and OB is 112.496°.

az<-deg(atan(dX/dY))+180
az

## [1] 112.496

8.14.5 Determine the horizontal distance between vertices OA and OB of the
computation practice.

A: The horizontal distance between vertices OA and OB is 23.9527 m.

H<-sqrt (dXA2+dY*2)
H

## [1] 23.95274

8.15 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Perform the radiation method in the field. Propose solutions for
mapping the points using Cartesian coordinates of the vertices, perimeter and area of the polygon
surveyed.
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8.16 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 8.1.

TABLE 8.1: Slide shows and video presentations on radial traverse survey.

Guide Address for Access

—_

Slides on traversing and coordinate geometry in radial surveying'
Radial surveying”
Radial surveying using compass®
Offset and radial surveys®
Radial surveys®

T W N

8.17 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 8.2).

TABLE 8.2: Practical and research activities used or adapted by students using radial traverse
survey.

Activity Description
1 In the content on radial traversing and coordinate geometry, interest may arise in
doing the work based on computational examples presented
2 Perform field measurements with the radial method. Determine the horizontal
distance to each measured point
3 Perform perimeter and area evaluation of a closed polygon from field measurements

with the radial method

8.18 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Radial Traverse Survey with Geomatics and R”, on a single
A4 page in order to show the student’s abilities to summarize a subject presenting key points
considered of greater importance today.

1http://www. sergeo.deg.ufla.br/geomatica/book/c8/presentation.html#/
2https ://youtu.be/s8nihBwuVYc
3https ://youtu.be/rwFyJ30vXo8
4https ://youtu.be/5fPIGtac7bs
5https ://youtu.be/wufVI5invly
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Coordinate Geometry of Closed-Path ‘Traverse Surveying

9.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e How to perform the calculation of Closed-path traverses with irradiations in R.

e« How to calculate bearings, azimuths, latitudes and longitudes in a closed-path traverse survey
with irradiations.

¢ What are the sources and errors in the calculation of closed-path traverses with irradiations?

o How to determine the errors of linear closure, relative accuracy of closed-path traverse.

o How to perform error adjustment on a closed-path traverse with irradiations by the Bowditch
method.

¢ How can R software and packages circular, LearnGeom, rgdal and plotKML be used in the analysis
and mapping of closed-path traverse survey?

9.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Perform the calculation of closed-path traverse with irradiations in R.

o Calculate bearings, azimuths, latitudes and longitudes in closed-path traverse surveys by walking
with radiations.

¢ Know the sources and errors in the calculation of closed-path traverses with irradiations.

o Calculate the errors of linear closure, relative accuracy of closed-path polygonal survey by
walking with irradiations.

e Perform error adjustment on a closed-path traverse by the Bowditch method.

e Use R software and packages circular, LearnGeom, rgdal and plotkML in the analysis and map-
ping of closed-path traverse survey data with irradiations.

9.3 Introduction

Depending on the type of project and the size of the area, a polygon with georeferenced vertices can
be characterized by local plane topographic survey or with the plane of cartographic projection,
such as Universal Transverse Mercator (UTM). Generally, a set of vertices in topographic surveys
are performed for specific purposes, such as (Silva and Segantine, 2015):

DOLI: 10.1201/9781003184263-9 199
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Topographic mapping;

Cadastral mapping;

Control points for aerophotogrammetry;

Support network for surveying and implementation of works.

The closed-path polygonal traverse has been used in civil engineering works and for rural cadastral
and surveying mapping. When surveying a polygon, we must observe through field reconnaissance
whether the vertices to be measured on the terrain are intervisible two-by-two. The polygon should
have as few vertices as possible to minimize the effect of the centering error of the instrument at
station changes. The installation site of the measuring instrument should be firm, flat, and free
of vibrations. Wooden pickets can be used instead of concrete blocks in surveying work where the
supporting vertices have a short temporal function (Silva and Segantine, 2015).

9.4 Closed-Path Traverse Surveying Calculation

In closed polygons, the vertices are materialized in the field, returning to the initial point at the
end of the survey, forming a figure with closed geometry. This enables to check the angles and
distances observed in relation to the accuracy required in different types of topographic surveys
(Figure 9.1)(Alves and Silva, 2016).

O Polygon station
O Irradiation point

FIGURE 9.1: Closed-path polygonal traverse used for as-built survey of a building and the
location of the same area in a color composition 853 from WorldView-2 satellite image (bottom).

The angles and directions obtained when measuring closed-path polygonal traverses can be eval-
uated after the fieldwork has been completed. After determining the errors of the linear and
angular measurements, the polygon can be adjusted to determine a geometrically consistent clo-
sure between angles and lengths. Depending on the magnitude of the error, field observations
must be repeated until adequate results are obtained. Determining the accuracy of the traverse
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adjustment has been extremely important in assessing whether the property mapping is within
the specifications determined by law (Ghilani and Wolf, 1989).

Different procedures can be used to calculate and adjust polygon traverses. These procedures
range from elementary methods to more advanced techniques based on the least squares method.
Only elementary procedures will be considered in this chapter, with coordinate adjustment based
on the Bowditch method.

The basic steps for calculating closed-path polygonal traverses are (Alves and Silva, 2016):

o Adjusting angular errors to fix geometric conditions;

o Determination of azimuths (or directions) of alignments;

o Calculation of longitude and latitude and adjustment of linear closure error;

¢ Calculation of rectangular coordinates of polygon stations;

e Calculation of lengths and azimuths of polygon lines after adjustment;

o Calculation of rectangular coordinates of irradiations;

e Mapping the surveyed area with polygon and irradiations (drawing);

e Determination of the area of interest on the map;

e Performing the inverse calculation and descriptive memorial of the area of interest;
o Mapping the area referring to the descriptive memorial (drawing).

9.5 Balancing Angles

In traditional adjustment methods, the first step is to adjust the angles according to geometric
properties. The balancing of angles is performed, starting from the knowledge of the total error
of the sum of angles of the polygon. Angular correction can be performed by applying an average
correction for each angle measured at the stations by dividing the total angular closure error by
the number of angles (Ghilani and Wolf, 1989).

The angular error can be determined as a function of the expected or theoretical value of the
sum of angles that the polygon should have. The expected sum of the internal angles > ai; and
external angles > aer of a closed-path polygon traverse, as well as the sum of the azimuths of
an open-path traverse Y Az, and the algebraic sum of the deflections > d; should present the
angular geometric value based on the following summations:

> aip = (n—2)180° (9.1)
> aer = (n+2)180° (9.2)
Z Azp = Azp — Az (9.3)

> dp = +360° (9.4)

where in the case of deflection angles, right deflections are given the sign (+) and left deflections
are given the sign (-). The sum of the right deflections minus the sum of the left deflections must
equal 360°.

The sum of the observed angles minus the theoretical angles will determine the angular closure
error (Ffa) in the survey methods used.
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The angular closure error to be distributed to each survey station vertex by internal angles (EFai),
external angles (EFae), azimuths (EF Az) and deflection angles (FFd) is calculated by:

(22 aip — ) air)

EFai = - (9.5)
EFae = (2290 ~ 2. acr) (9.6)
EFAs = A% - 2 Azr) (9.7)
EFd = & adon— > dr) 9.8)

where )" ai is the sum of the observed internal angles, > ae, the sum of the observed external
angles, Y Azq, the sum of the observed open polygon angles, > ad, the sum of the observed
deflection angles n, the number of polygon vertices.

The error must be distributed in equal portions for the total number of measured angles, consid-
ering that the correction will always have a sign opposite to the sign of the error. For example,
if the sum of the measured angles is greater than the expected value, the error will be negative
and, therefore, the correction for each vertex must be added (Souza, 2003).

It should be noted that, although the adjusted angles satisfy the geometric condition of a closed
geometry, the resulting values may not be close to the observed angles, because adjustments
applied to angles are independent of the angle size (Ghilani and Wolf, 1989).

The angular closure error tolerance (T") for theodolite surveys can be obtained by (Comastri and
Junior, 1998):

T =5vn (9.9)

In surveys using equipment with higher measurement accuracy, an evaluation of the survey quality
is proposed as a function of the relative precision obtained based on the linear error of the survey,
demonstrated later (Table 9.1).

9.6 Azimuth Calculation

After balancing angles, the next step is to calculate preliminary azimuths or bearings. At this
stage, at least one direction value is required from a polygon vertex to assign the north direction.
In some surveys, the magnetic bearing of alignment can be determined and used as reference
direction; however, for boundary surveys, true directions are required.

The true north direction can be obtained by (Ghilani and Wolf, 1989):

o Incorporating into the polygon a line with the true direction;
o Performing astronomical observations to determine the magnetic declination;
o Using satellite positioning system measurements.
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Considering an initial azimuth obtained from a geodetic reference network or determined in the
field, the azimuths of the other vertices can be calculated as a function of the known internal
angles (Souza, 2003):

Az = Az 4+ 180° + A, (9.10)

where Az, ; is the azimuth to be calculated (forward), Az;, the known azimuth at the previous
vertex (backward), and A,, the internal angle. If the result of the equation is negative, we must
add 360°, and if it is greater than 360°, we must subtract 360° as many times as necessary. The
(+) sign must be used when the angle between the alignments is measured clockwise from the aft
alignment, otherwise the (-) sign must be used.

In the case of a polygonal survey with detail points included, the azimuth of the irradiated point
must be calculated, so that the mapping is presented in the same direction. The azimuth of the
irradiation can be calculated by:

Az;, = Az, + 180° £+ Air (9.11)

where Az, is the azimuth of irradiation measured at the forward vertex of the polygon to be
calculated, Az;, the known azimuth at the anterior vertex (backward) of the main polygon and,
Air, the irradiated angle. Other procedures are similar to those described for polygon azimuth
calculation.

9.7 Latitude and Longitude Calculation

After angles balancing and calculating preliminary azimuths, the closure of the polygon can be
evaluated by calculating the longitude and latitude of each line. The longitude of an alignment
referred to the orthographic projection in the direction of the east-west axis of the survey and is
equal to the length of the alignment multiplied by the sine of the azimuth or bearing angle. The
latitude of a line consisted of the orthographic projection in the direction of the south-north axis
of the survey and is equal to the length of the line multiplied by the cosine (Ghilani and Wolf,
1989; Alves and Silva, 2016):

AX = Hsenw (9.12)

AY = Hcosa (9.13)

9.8 Traverse Linear Misclosure Error and Relative Precision

Considering a closed-path polygon, if all angles and distances are measured perfectly, the algebraic
sum of the longitudes of all polygon alignments should be zero. The same condition applies to the
algebraic sum of all latitudes. Since the conditions are not perfect, with errors in the measurement
of angles and distances, the difference between the observed and expected value determines the
longitude closure error and the latitude closure error. These values are determined by the algebraic
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sum of the longitudes and latitudes, which are compared to a required standard. The magnitude
of the longitude and latitude closure error indicates the precision of the observation of angles
and distances. High error values indicate the existence of significant errors or even mistakes. In
the occurrence of small errors, the observed data are accurate and free of mistakes, but it is not
guaranteed that no systematic or compensation errors occur (Ghilani and Wolf, 1989).

The longitude and latitude closure errors determine the linear polygon closure error (E} ) based
on the following equation:

B =/ %2+ (X vy (9.14)

where > X is the longitude closure error and, > Y, the latitude closure error.

The closed-path polygon relative precision (Pg) is expressed by the fraction of the linear closure
error (E) as numerator and the polygon perimeter (P) as denominator (Alves and Silva, 2016):

E
Pp=-* 9.15
= (9.15)
The relative precision result must be divided by 1/Pg to express the 1 m error for the total area
surveyed. For example, in a survey with relative precision of 1:10000, there is 1 m of error for
every 10000 m of perimeter surveyed.

Linear closure error tolerance can be checked against relative precision (Table 9.1) (Silva and
Segantine, 2015).

TABLE 9.1: Linear closure error tolerance values based on relative precision.

Observation with Total

Quality  Precision Application Station
High > 1:50000 High-precision engineering 1 mm + 1 ppm accuracy
surveying
Good 1:10000 to  General high precision engineering 2 mm + 2 ppm accuracy
1:50000 surveying
Regular  1:5000 to Rural surveying 3 mm + 3 ppm precision
1:10000
Low < 1:5000 Rural surveying 5 mm + 5 ppm precision

NBR 13133/1994 can be consulted for more details in specific situations (ABNT, 1994).

9.9 Traverse Adjustment

The linear closure error must be adjusted or distributed to balance the polygon for any closed
polygon. The adjustment must be performed even if the closure error is negligible, when repre-
senting the polygon at map scale. There are several elementary methods available for adjusting
the polygon, but the most common is the compass rule (Bowditch method). Least-squares fitting
is an advanced technique that can also be used in traverse adjustment and is discussed with more
details in Ghilani (2017).
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9.10 Compass Rule

In the compass rule, the longitude and latitude values are adjusted in relation to their length.
Although this method is not as rigorous as the least squares method, there is a logical distribution
of the closure errors proportional to the sides of the polygon (Souza, 2003). The longitude C(X;)
and latitude C(Y;) corrections are performed according to the following rules (Alves and Silva,
2016):

CX;) = —%Hi (9.16)
oY) = _%Hi (9.17)

where H, is the horizontal distance of the alignment to be corrected.

The correction sign is opposite the closure error (Ghilani and Wolf, 1989). The corrections should
be summed algebraically at each projection. A check can be made so that the column sum of
the corrected longitude and latitude values must be zero; there may be small differences resulting
from approximations that must be eliminated by revising one of the corrections (Ghilani and
Wolf, 1989; Souza, 2003).

9.11 Rectangular Coordinate Calculation

Plane coordinate systems or arbitrary values can normally be used as a basis for determining
rectangular coordinates from the longitude and latitude values calculated from the surveying
data (Alves and Silva, 2016):

We can assume as initial vertex of the polygon, X and Y values of 1000 and 1000, respectively,
depending on the magnitude of the negative longitude and latitude values, in order to avoid the
occurrence of negative values in the final plane coordinates.

9.12 Computing Final Adjusted Traverse Lengths and Directions

In the polygonal adjustment, corrections are applied to longitudes and latitudes to obtain adjusted
values. These values are used to calculate X,Y coordinates of polygon stations. As longitude
and latitude lines values are modified in the adjustment process, length and azimuth values are
also modified. Thus, it is necessary to calculate the final or adjusted lengths and directions. The
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equations presented above can be used to obtain the final length and direction of adjusted polygon
lines based on adjusted longitude and latitude coordinates (Alves and Silva, 2016).

Hup=\/AX2, +AY2, (9.20)

AZAB = tgil( AYAB

)+C (9.21)

where C'is 0° if AX and AY > 0; 180° if AY < 0; and 360° if AX < 0 and AY > 0.

9.13 Traverse Perimeter and Area Calculation

The traverse perimeter of a closed polygon can be calculated by the sum of distances determined
by inverse calculation between each vertex (H,) of the surveyed area, starting from the northern
most point of the polygon, going to the right, until it runs around the entire perimeter, arriving
back at the first vertex (Alves and Silva, 2016).

P= }ijzig (9.22)
n=1

The area calculation can be performed by the method of determinants of the matrix of Cartesian
coordinates of vertices of the closed polygon in the surveyed region. The area of the polygon can
be obtained as the algebraic sum of the ascending and descending products divided by two, of
the z, y coordinates that defined the area of the polygon. Other methods can be used for area
calculation and will be described later.

9.14 Error Sources in Closed Traverse Surveying

Some sources of error in traversing can be caused by (Ghilani and Wolf, 1989; Alves and Silva,
2016):

o Improper selection of station points, resulting in improper sighting conditions due to alternating
sun and shade, visibility of only one end of the line, line of sight close to the ground, lines that
are too short and, sighted in the direction of the sun;

o Errors in observing angles and distances;

o Failure to observe angles in equal numbers of times in the direct and reverse directions.

9.15 Mistakes in Traverse Computations

The most common mistakes in traverse surveying are (Ghilani and Wolf, 1989; Alves and Silva,
2016):
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¢ Occupying the wrong station and performing sighting on the wrong station;
e Incorrect orientation;

o Confusing left and right angles;

o Forgetting to register the point;

o Not identifying the station targeted.

The most common mistakes in traverse calculations are (Ghilani and Wolf, 1989; Alves and Silva,
2016):

o Failing to adjust angles before calculating azimuths or bearings;

¢ Applying angle adjustment in the wrong direction and not getting to the sum of all angles;
¢ Swapping longitude and latitude values;

¢ Confusing coordinate signs.

9.16 Computation

As a computation practice, we proposed to use data from anticlockwise internal angle walk survey
of a closed polygon traversing around a building on a university campus, performed with mechan-
ical theodolite. The corners of the building are surveyed as detail points by irradiation. Solutions
for mapping the points are proposed, determining linear closure error, relative precision, partial
and final coordinates, area calculation and the surveyed perimeter. Next, we demonstrate how to
create and store attribute data in spatial points shapefile and (KML) formats.

The circular package (Lund et al., 2017a) is used to convert angular measurements from degrees
to radians associated with trigonometry operations to determine coordinates of polygon vertices
and radiations. The LearnGeom package (Jammalamadaka and SenGupta, 2001; Briz-Redon and
Serrano-Aroca, 2020) is used to map vertices in the surveyed area. Area calculation is performed by
matrix determinants of order two and the perimeter is determined as a function of the summation
of distances of alignments between building vertices. The rgdal R package enables access to the
Geospatial Data Abstraction Library (GDAL), projection and transformation operations of the
library PROJ (Bivand et al., 2021). This enabled to transform coordinate vertices in spatial points
with attributes and map them. In the plotkML R package, objects from sp, space-time and raster
classes can be converted to KML with basic cartographic rules (Hengl et al., 2020). Vertices are
mapped in Google Earth using WGS-84 datum.

9.16.1 Installing R packages

The install.packages function is used to install circular and LearnGeom, rgdal and plotKML
packages in the R console.

## install.packages ("circular')
## install.packages ("LearnGeom")
## install.packages("rgdal")

## install.packages ("plotKML")
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9.16.2 Enabling R packages

The library function is used to enable the circular, LearnGeom, rgdal and plotkML packages in
the R console.

library(circular)
library(LearnGeom)
library(rgdal)
library(plotKML)

9.16.3 Adjusting a closed-path polygon traverse and radiations by the compass
rule (Bowditch)

Polygon and irradiation adjustment are performed by the compass rule (Bowditch method). Data
obtained from a walking survey with theodolite is recorded in a spreadsheet with the following
coding. Occupied station (E); Point targeted (PV); Horizontal angle in degrees (AH ); Horizontal
distance (H) in m; Magnetic azimuth (AB Az, = 237°43'10").

# Import field notes

cam<-data.frame(E=c('A', 'A', 'B', 'B', 'C', 'C', 'D', 'D', 'D', 'D'),
PV=c('RDVB', 'il', 'RAVC', 'j2', 'RBVD', 'i3', 'RCVA', 'i4', 'i5',
1i6'),

AH=c ((90+31/60+10/3600), (17+25/60+30/3600), (88+58/60+20/3600),

(78+30/60+10/3600), (90+10/60+30/3600), (33+20/60+50/3600),

(90+20/60+20/3600), (10+52/60+10/3600), (60+13/60+40/3600),

(85+18/60+50/3600)), H=c(16.97, 3.99, 25.41, 4.31, 16.99, 1.60,
25.89, 7.27, 14.69, 12.71))

The data is digitized and exported in .txt for later use.

## write.table(cam, file = "E:/Aulas/Topografia/Aula8/cam.txt",
## sep = " ", row.names = TRUE, col.names = TRUE)

A subset of rows and columns of the dataset is made only with measurements performed in the
traverse, in order to separate closed-path polygon data and irradiations data. The calculations
are performed and organized in a sequential and logical manner to facilitate understanding of
adjustment steps for initial polygon mapping and, subsequently, irradiations.

pol<-cam[c(1l, 3, 5, 7), c(1:4)]

The angular error of closure is determined based on the equation of internal angles, since the
survey is performed counterclockwise when traversing the area along the station vertices. If of
interest, the quality of the angular error can be evaluated based on a tolerance value. For theodolite
surveys, an angular error tolerance of 5'y/n (Comastri and Junior, 1998).
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# Determining angular closure error

# Sum the interior angles of the polygon
sumAH<-sum(pol$AH)

sumAH

## [1] 360.0056

# Determine the theoretical sum of the polygon angles
SUMAHt<-180* (nrow(pol)-2)
sumAHt

## [1] 360

# Determine the angular closure error
EFA<-sumAH-sumAHt
EFA

## [1] 0.005555556

Based on the magnitude of the angular error of closure, error correction is performed in equal
proportions for all vertices and the corrected angles are added as a new column to the polygon
dataset.

# Determine the angular correction per vertex
EFAV<-EFA/nrow(pol)
EFAv

## [1] 0.001388889

# Perform correction of angular closure error per polygon vertex
# As sumAH was greater than sumAHt, correct by subtracting
AHc<-pol$AH-EFAv

AHc

## [1] 90.51806 88.97083 90.17361 90.33750

# Join the corrected angle results in the polygonal table
pol<-cbind(pol, AHc)
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Based on the corrected horizontal angle values, azimuth calculation is performed between the
polygon vertices. The results of azimuth calculation are checked by calculating the azimuth that
is read with the theodolite in order to evaluate if the same value of the observed reading and the
azimuth compensation calculation is obtained. The calculated azimuths are organized in a new
column of the polygon dataset.

# Perform the azimuth compensation
AZAB<-237+43/60+10/3600
AZAB

## [1] 237.7194

AZBC<-AZAB+180+pol$AHc[2]-360
AZBC

## [1] 146.6903

AZCD<-AZBC+180+pol$AHc[3]-360
AZCD

## [1] 56.86389

AZDA<-AZCD+180+pol$AHc[4]
AZDA

## [1] 327.2014

# Check the results by calculating AZAB
AZAB<-AZDA+180+pol$AHc[1]-360
AZAB

## [1] 237.7194

AZ<-c(AZAB, AZBC, AZCD, AZDA)
AZ

## [1] 237.71944 146.69028 56.86389 327.20139
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# Join the azimuth results calculated in the polygon table
pol<-cbind(pol, AZ)

Based on the azimuth and horizontal distance values between each alignment, the longitude and
partial latitude values of each vertex of the polygon are determined. The results of the partial
projections are added in a new column of the polygonal dataset.

# Determine the partial projections x and y
xA<-(sin(rad (pol$AZ[1])))*pol$H[1]
xA

## [1] -14.34717

xB<-(sin(rad(pol$AZ[2])))*polS$H[2]
xB

## [1] 13.95427

XxC<=(sin(rad (pol$AZ[3])))*polSH[3]
xC

## [1] 14.22699

xD<-(sin(rad (pol$AZ[4])))*polSH[4]
xD

## [1] -14.0243

x<-c(xA, xB, xC, xD)
X

## [1] -14.34717 13.95427 14.22699 -14.02430

yA<-(cos(rad(pol$AZ[1])))*polSH[1]
YA

## [1] -9.063091
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yB<-(cos(rad (pol$AZ[2])))*polS$H[2]
yB

## [1] -21.2355

yC<-(cos(rad(pol$AZ[3])))*polSH[3]
yC

## [1] 9.287241

yD<-(cos(rad(pol$AZ[4])))*polSH[4]
yD

## [1] 21.76261

y<-c(yA, yB, yC, yD)
y

## [1] -9.063091 -21.235498 9.287241 21.762609

# Merge the results of partial projections into the polygon table
pol<-cbind(pol, x, y)

The linear closure error and the relative accuracy of the polygon are determined by the partial
projection. Quality classification with low accuracy of the survey is observed (Silva and Segantine,
2015); however, it should be noted that this survey is conducted in practice with mechanical
theodolite and stadia rod reading and not with total station equipment and with students in the
training phase, resulting in a greater magnitude of error in the survey.

# Determine the linear closure error
EL<-sqrt((sum(pol$x)A2)+(sum(polsy)Ar2))
EL

## [1] 0.7749657

# Determine the relative precision
PR<-1/(EL/sum(pol$H))
PR
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## [1] 110.0178

The linear error correction is determined for each vertex of the polygon in relation to the distance
of each measured alignment. The linear error correction values of the X and Y projections are
merged into the polygonal dataset.

# Determine the linear error correction at x and y
Cx<-=(sum(pol$x) /sum(pol$H) ) *pol$H
Cx

## [1] 0.03785789 0.05668644 0.03790250 0.05775726

Cy<--(sum(pol$y)/sum(pol$H))*pol$H
Cy

## [1] -0.1495298 -0.2238982 -0.1497060 -0.2281277

# Join the linear error correction values in the polygon table
pol<-cbind(pol, Cx, Cy)

Then, linear error correction is performed in order to determine corrected longitude and latitude
values to obtain accurate polygon closure. The corrected longitude and latitude results are joined
to the polygonal dataset.

# Perform the linear error correction of x and y
xc<= x+Cx
XC

## [1] -14.30931 14.01096 14.26489 -13.96654

yc<= y+Cy
ycC

## [1] -9.212621 -21.459396 9.137535 21.534482

# Join the corrected longitude and latitude results in the polygon table
pol<-cbind(pol, xc, yc)
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Absolute or final coordinates of the X 4, Y, vertices are obtained from imaging of the area available
on Google Earth with the values of 600104.9400 and 8273805.3100 m, respectively. In this case, the
coordinates are obtained in UTM projection, UTM zone 21S, transformed from WGS-84 datum.
From the coordinates of vertex A, the coordinates of B, C' and D vertices are determined. The
checking of the arbitrated values for vertex A is accomplished, performing the same calculation
procedure of the other vertices. The results of X, Y UTM coordinates are joined to the polygonal
dataset.

In situations where more survey accuracy is required, plane coordinates can be obtained by
surveying with GNSS technology near the location of interest. A view at the point where GNSS
is tracked can be used as a reference to determine plane coordinates of the other vertices.

# Determine the absolute coordinates
XA<-600104.9400

XB<-XA+pol$xc[1]

XB

## [1] 600090.6

XC<-XB+pol$xc[2]
XC

## [1] 600104.6

XD<-XC+pol$xc[3]
XD

## [1] 600118.9

XA<-XD+pol$xc[4] # check XA vertex
XA

## [1] 600104.9

X<-c(XA, XB, XC, XD)
YA<-8273805.3100
YB<-YA+polS$yc[1]

YB

## [1] 8273796
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YC<-YB+pols$yc[2]
YC

## [1] 8273775

YD<-YC+pol$yc[3]
YD

## [1] 8273784

YA<-YD+pol$yc[4] # check YA vertex
YA

## [1] 8273805

Y<-c(YA, YB, YC, YD)
# join X and Y coordinates in the polygon table
pol<-cbind(pol, X, Y)

The polygon dataset with all calculations is exported in a .txt file.

## write.table(pol, file = "E:/Aulas/Topografia/Aula8/pol.txt",
## sep = " ", row.names = TRUE, col.names = TRUE)

The format function is used to obtain X, Y coordinate values to 4 decimal places. The coordinate
values with 4 decimal places can be useful for the construction of the specifications or other future
demands.

# Display X and Y coordinates with 4 decimal places
Xa<-format (XA, digits=4, nsmall=4)
Xa

## [1] "600104.9400"

Xb<-format (XB, digits=4, nsmall=4)
Xb

## [1] "600090.6307"
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Xc<-format (XC, digits=4, nsmall=4)
Xc

## [1] "600104.6416"

Xd<-format (XD, digits=4, nsmall=4)
Xd

## [1] "600118.9065"

Ya<-format (YA, digits=4, nsmall=4)
Ya

## [1] "8273805.3100"

Yb<-format(YB, digits=4, nsmall=4)
Yb

## [1] "8273796.0974"

Yc<-format(YC, digits=4, nsmall=4)
Yc

## [1] "8273774.6380"

Yd<-format (YD, digits=4, nsmall=4)
Yd

## [1] "8273783.7755"

9 Coordinate Geometry of Closed-Path Traverse Surveying

The polygon vertices are mapped through LearnGeom package functions. For this, dimensions of
the X, Y axis are defined, UTM coordinates are assigned at vertices A to D and the polygon is

drawn with a gray color (Figure 9.2).
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##
##
##
##
##
##
##
##
##
##
##
##
##
##

# Define dimensions of the X,Y axis

x_min <- 600088

x_max <- 600120

y_min <- 8273768

y_max <- 8273810

# Draw the x,y axis

CoordinatePlane (x_min, x_max, y_min, y_max)
# Assign coordinates to vertices A through D
A <= c(pol$X[1],polsY[1])

B <- c(polsx[2],polsY[2])

C <= c(polsX[3],polsY[3])

D <~ c(pol$X[4],polsY[4])

# Draw a polygon from vertices A through D
Draw(CreatePolygon(A, B, C, D), "gray", label=T)

After the polygonal calculation and correction, the irradiations calculation is performed. A subset
of rows and columns of the dataset is made with irradiations measurements only. The calculation
execution is organized in a sequential and logical way to facilitate the understanding of irradiation
adjustment and mapping steps.

# Perform a subset with irradiation data only
irr<-cam[c(2, 4, 6, 8, 9, 10), c(1:4)]

Considering that the angular correction is not performed for the irradiation data, the azimuth
calculation is performed with original angle values of each irradiation. The polygon azimuth
and horizontal angle values of irradiations are used to determine the azimuth of irradiations
performed from the polygon vertices. The calculated azimuths are organized in a new column of
the irradiation dataset.

# Perform the azimuth compensation of irradiations
i1<-pol$AZ[4]+180+irr$AH[1]-360

il

##

[1] 164.6264

i2<-pol$AZ[1]+180+irr$AH[2]-360

i2

##

[1] 136.2222

13<-pol$AZ[2]+180+irr$AH[3]-360

i3

##

[1] ©.0375
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FIGURE 9.2: Vertex mapping of a closed polygon conducted around the animal anatomy build-
ing on the Federal University of Mato Grosso (UFMT) campus, with the LearnGeom package.
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74<-pol$AZ[3]+180+irrsAH[4]
i4

## [1] 247.7333

i5<-pol$AZ[3]+180+irr$AH[5]
i5

## [1] 297.0917

16<-pol$AZ[3]+180+irr$AH[6]
i6

## [1] 322.1778

AZi<-c(i1, i2, i3, i4, i5, 1i6)
# Join the results of calculated azimuths of radiations in the polygon table
irr<-cbind(irr, AZdi)

Based on the azimuth and horizontal distance values between each irradiation alignment, the
partial longitude and latitude values of each irradiation point are determined. The results of the
partial projections are added in a new column of the irradiation dataset.

# Determine x,y partial projections of irradiations
x1<=(sin(rad(irr$AZi[1])))*irr$H[1]
x1

## [1] 1.057797

x2<-(sin(rad(irr$AZi[2])))*irr$H[2]
X2

## [1] 2.98193

x3<-(sin(rad(irr$AzZi[3])))*irr$H[3]
x3

## [1] 0.001047197
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x4<=(sin(rad(irr$AzZi[4])))*irr$H[4]
X4

## [1] -6.727878

x5<=(sin(rad(irr$AZi[5])))*irr$H[5]
x5

## [1] -13.0782

x6<=(sin(rad(irr$Azi[6])))*irr$H[6]
X6

## [1] -7.793943

xi<-c(x1l, x2, x3, x4, x5, x6)
yl<-(cos(rad(irr$AZi[1])))*irr$H[1]
yl

## [1] -3.847228

y2<-(cos(rad(irr$AZi[2])))*irrsH[2]
y2

## [1] -3.111943

y3<-(cos(rad(irr$AZi[3])))*irrsH[3]
y3

## [1] 1.6

y4<-(cos(rad(irr$AzZi[4])))*xirr$H[4]
v4

## [1] -2.754733
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y5<-(cos(rad(irr$AZi[5])))*irrsH[5]
y5

## [1] 6.690053

y6<-(cos(rad(irr$AZi[6])))*irr$H[6]
y6

## [1] 10.03985

yi<-e(yl, y2, y3, y4, y5, y6)
# Merge the results of partial projections into the irradiation table
irr<-cbind(irr, xi, yi)

Considering that the linear error correction is not performed for the irradiations, X, Y coordinates
of each irradiation are determined by the UTM coordinates of the polygon vertices adjusted
previously. In this case, the coordinates are obtained in UTM projection, UTM zone 21S, from
WGS-84 datum transformation. The results of UTM X, Y coordinates of irradiations are joined
to the irradiations dataset.

# Determine absolute coordinates of irradiations
X1<-XA+irr$xi[1]
X1

## [1] 600106

X2<=-XB+irrs$xi[2]
X2

## [1] 600093.6

X3<=-XC+irr$xi[3]
X3

## [1] 600104.6
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X4<-XD+irrs$xi[4]
X4

## [1] 600112.2

X5<=-XD+irr$xi[5]
X5

## [1] 600105.8

X6<-XD+irrs$xi[6]
X6

## [1] 600111.1

Xi<-c(X1, X2, X3, X4, X5, X6)

Y1<-YA+irr$yi[1]
Y1

## [1] 8273801

Y2<-YB+irrs$yi[2]
Y2

## [1] 8273793

Y3<-YC+irr$yi[3]
Y3

## [1] 8273776

Y4<-YD+irr$yi[4]
Y4

## [1] 8273781

9 Coordinate Geometry of Closed-Path Traverse Surveying
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Y5<-YD+irrs$yi[5]
Y5

## [1] 8273790

Y6<-YD+irrs$yi[6]
Y6

## [1] 8273794

Yi<-c(Y1l, Y2, Y3, Y4, Y5, Y6)
# Join X1 and Yi coordinates in the irradiation table
irr<-cbind(irr, Xi, Yi)

The irradiation dataset with all calculations is exported in a .txt file.

## write.table(irr, file = "E:/Aulas/Topografia/Aula8/irr.txt",
## sep = " ", row.names = TRUE, col.names = TRUE)

The format function is used to obtain X, Y coordinate values of irradiations with 4 decimal places.

# Show X and Y coordinates with 4 decimal places
Xil<-format (X1, digits=4, nsmall=4)
Xil

## [1] "600105.9978"

Xi2<-format (X2, digits=4, nsmall=4)
Xi2

## [1] "600093.6126"

Xi3<-format (X3, digits=4, nsmall=4)
Xi3

## [1] "600104.6427"
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Xi4<-format (X4, digits=4, nsmall=4)
Xi4

## [1] "600112.1787"

Xi5<-format (X5, digits=4, nsmall=4)
Xi5

## [1] "600105.8283"

Xi6<-format (X6, digits=4, nsmall=4)
Xi6

## [1] "600111.1126"

Yil<-format(Y1l, digits=4, nsmall=4)
Yil

## [1] "8273801.4628"

Yi2<-format (Y2, digits=4, nsmall=4)
Yi2

## [1] "8273792.9854"

Yi3<-format (Y3, digits=4, nsmall=4)
Yi3

## [1] "8273776.2380"

Yi4<-format (Y4, digits=4, nsmall=4)
Yi4

## [1] "8273781.0208"
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Yi5<-format (Y5, digits=4, nsmall=4)

Yi5

##

[1] "8273790.4656"

Yi6<-format (Y6, digits=4, nsmall=4)

Yi6

##

[1] "8273793.8154"

Vertices of irradiations are mapped inside the polygon through LearnGeom package functions. The
X,Y axis dimensions are defined, UTM coordinates are assigned at vertices A to D and the
polygon is drawn with a gray color and irradiations with a white color (Figure 9.3).

##
##
##
##
##
##
##
##
##
##
##
##
##
##

# Mapping X1 and Yi vertices of irradiations inside the polygon
# Assign coordinates of radiations 1 to 6

11 <= c(irr$Xi[1],irrsYi[1])

12 <= c(irrsSXi[2],irrsYi[2])

13 <= c(irrsXi[3],irrsYi[3])

14 <= c(irrs$Xi[4],irrsSYi[4])

15 <= c(irrs$Xi[5],1irrsYi[5])

16 <= c(irrsSXi[6],irrsYi[6])

# Draw the x,y-axis

CoordinatePlane (x_min, x_max, y_min, y_max)

# Draw the polygon

Draw(CreatePolygon(A, B, C, D), "gray'", label=T)

# Draw irradiations

Draw(CreatePolygon(il, 12, 13, 14, 15, i6), "white'", label=T)

The area defined by the perimeter of irradiations is determined using the method of determinants
by matrix of order 2. The area of the building obtained from the survey is 235.3 m?2.

# Calculate the area of the building by determinants

# Determine the sum of the ascending products

i6_
i5_
i4_
i3_
i2_
il_

i1 <=drr$Xi[6]*irrsYi[1]
16 <=irr$Xi[5]*irrsvyi[6]
i5 <—=drr$Xi[4]*irrs$Yi[5]
i4 <—Grr$Xi[3]*irrsyYi[4]
i3 <=drr$Xi[2]*irrs$Yi[3]
92 <=drr$Xi[1]*irrsYi[2]

sumAsc<-sum(i6_il, i5_16, i4_1i5, i3_1i4, i2_13, il1l_1i2)
# Determine the sum of descendant products

i1_
i6_
i5_

i6 <—drr$X[1]*irr$Y[6]
i5 <-drr$X[6]*irr$Y[5]
14 <-irr$X[5]*irrsy[4]
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FIGURE 9.3: Mapping closed polygon vertices with irradiations performed at the boundaries
of the animal anatomy building on the UFMT campus.
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i4_13 <-drr$X[4]*irrs$Y[3]

i3_72 <-irr$X[3]*irrsvy[2]

i2_91 <=irr$X[2]*irr$Y[1]

sumDesc<-sum(il_i6, 1i6_1i5, 1i5_1i4, i4_13, i3_12, i2_11)
area<-(sumAsc-sumDesc) /2

area

## [1] 235.3223

9.16.4 Investigate irradiation boundaries in Google Earth and R

Irradiations boundaries are mapped in R and Google Earth. To perform the mapping we define
data columns with coordinates in the irradiations dataset and assign UTM map projection system
to the vertices before performing the mapping. The coordinates of the vertices are re-projected to
WGS-84 geographic projection with the spTransform function. Subsequent mapping is performed
with the plot and plotkmL functions (Figure 9.4).

# Define columns with coordinates

irrGeo<-irr

coordinates(irrGeo) <- c("Xi'","vi")

# Define and apply UTM map projection system

prj_mt <- CRS("+init=epsg:32721")##Mato Grosso
projastring(irrGeo) <- prj_mt

# Reproject to WGS84 geographical projection

prj_wgs84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84'")
irr_wgs84 <- spTransform(irrGeo, CRS= prj_wgs84)

plot(irrGeo, axes=T) # Mapping point shapefile

The file irr_wgs84.kml is opened in the source directory, requiring the Google Earth application
installed on the computer to be displayed (Figure 9.5).

## plotKML(irr_wgs84, colour_scale = SAGA_pal[[1]]) # Mapping KML

9.16.5 Export geographic coordinates of irradiations as ESRI Shapefile and
KML file

The vertices with the geographic coordinates of irradiations are exported as two distinct file types:
ESRI Shapefile and KML.
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FIGURE 9.4: Mapping irradiations of building on the UFMT campus transformed in
SpatialPointsDataFrame class object.

## # Export data as SpatialPointsDataFrame

## writeOGR (obj=1irrGeo, dsn="E:/Aulas/Topografia/Aula8/irrGeo.shp",

# layer="irrGeo", driver="ESRI Shapefile')

## # Export data as KML

## writeOGR(irr_wgs84, dsn="E:/Aulas/Topografia/Aula8/irr_wgs84.kml",

## layer= "irr_wgs84", driver ="KML", dataset_options=c("NameField=name"))

According to Bird (1970), comparing polygonal fitting between Bowditch and least squares meth-
ods, the best fitting results are obtained by the least squares method. Therefore, the least squares
method should be implemented in the future to obtain better polygon traverse adjustment using
the R software.
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FIGURE 9.5: Mapping of irradiations performed at building boundaries at the UFMT campus
on Google Earth.

9.17 Solved Exercises

9.17.1 In a survey conducted by walking by internal angles of a closed-path
polygon traverse, the sum of the polygon angles is:

a. y.a = (n+2) 180°.

b. Y a = (n-2) 180°. [X]

c. Ya=Azp— Az,

d. None of the alternatives.

9.17.2 List two advantages of the walkover survey method of closed-path poly-
gon traverse.

A: The closed-path polygonal traverse survey method enables to circumvent obstacles in surveys.
Thus, it is possible to check the angles and distances observed in relation to the accuracy required,
considering the survey of a geometrically closed polygon.
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9.17.3 In surveying a triangular area by the walkover survey method of closed-
path polygon traverse, the sum of the interior angles of the polygon
is:

900°. [X]
540°.
720°.
360°.

o o

9.17.4 In a walkover survey of closed-path polygon, a perimeter of 86 m was
observed. The sum of the X and Y errors of partial longitude and
latitude were -0.045 and +0.774 m, respectively. Determine the linear
closure error and relative precision.

A: The linear closure error is 0.77 m. The relative precision is 1:110.
# Determine the linear closure error

EL<-sqrt((sum(-0.045)A2)+(sum(0.774)72))
EL

## [1] 0.775307

# Determine the relative precision
PR<-1/(EL/86)
PR

## [1] 110.9238

9.17.5 In a walkover survey with an electronic total station, the relative pre-
cision was 1:9000. Determine the quality rating of the survey according
to Silva and Segantine (2015).

a. Low.

b. Good.

c. High.

d. Regular.[X]
|

9.18 Homework

Choose one exercise presented by the teacher and solve the question with different input val-
ues. Compare the results obtained. Performe closed-path polygon traverse surveying method in
the field. Propose solutions to provide uncertainty information on the results and mapping the
surveyed points.
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9.19 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 9.2.

TABLE 9.2: Slide shows and video presentations on coordinate geometry of closed-path polyg-
onal traverse surveying.

Guide Address for Access

1 Slides on traversing and coordinate geometry in closed-path polygonal surveying'
Surveying closed-path traversing?
Closed-path traversing with animation®
Closure error in surveying and correction®
Closed-path polygon surveying in the field®
Traverse adjustment, purpose and observations needed’
Traverse adjustment’

~N O Uk W N

9.20 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 9.3).

TABLE 9.3: Practical and research activities used or adapted by students using coordinate
geometry of closed-path polygonal traverse surveying.

Activity Description
1 There is demand to establish a function for azimuth calculation and implement
least squares methods for traversing adjustment
2 Survey a closed-path polygon by the walking method. Determine the angular
closure error and the relative precision
3 Perform coordinate corrections obtained in field survey using the Bowditch method.

Determine polygon area and perimeter after corrections

1http://www.sergeo.deg.ufla.br/geomat'ica/book/c9/presentat'ion.html#/
thtps://youtu.be/rlZ_bAuceSY
3https://youtu.be/pGSZVXSOnIS
4https://youtu.be/Ww?EcE3w_x4
5https://youtu.be/?slV?blBDds
6https://youtu.be/waooankIs
7https://youtu.be/gtv—lGquVE
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9.21 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Coordinate Geometry of Closed-Path Traverse Surveying
with Geomatics and R”, on a single A4 page in order to show the student’s abilities to summarize
a subject presenting key points considered of greater importance today.
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Coordinate Geometry of Intersection Surveying

10.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o What is the purpose of intersection surveying?

e How to determine rectangular coordinates in intersection surveying.

¢ How to map intersection survey vertices with R packages LearnGeom and maptools, and Google
Earth.

e How to convert survey points to spatial points with attributes.

10.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

o Evaluate intersection surveying applications.

¢ Calculate rectangular coordinates in intersection surveying.

o Map intersection survey vertices in R with the packages LearnGeom, maptools and Google Earth.
o Convert survey points to spatial points with attributes.

10.3 Introduction

Intersection surveys have been used in geomatics for difference in level determination between
two accessible points separated by a large distance, or when some points are accessible and others
inaccessible. In this case, trigonometric leveling can be used in conjunction with the intersection
process, given the plane coordinates and azimuth between the two visible vertices.

Rectangular plane coordinate systems have been widely used in geomatics, except for geodetic
control surveys over large areas. The advantages of referencing points in a rectangular coordinate
system are (Alves and Silva, 2016):

¢ Relative positions of vertices are defined individually;

o Vertices can easily be represented using graphs;

o In case of lost points in the field, values can be retrieved from other available points in the same
reference system;

DOTI: 10.1201/9781003184263-10 233
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o Computation calculations have been made easier.

The situations using coordinate geometry problems are intersection of points with two lines, a line
and a circle, and two circles. The method applied to determine the intersection of points between
line and circle can be solved by knowing the azimuth of one line and the length of another line.
The intersection between two circles can be solved by knowing the length of two lines. These types
of problems are commonly encountered on horizontal survey alignments where it is necessary to
calculate intersections of tangents and circular curves to divide land parcels with straight lines
and circular arcs (Ghilani and Wolf, 1989).

10.4 Intersection Surveying

Intersection problems can be solved by realizing triangles between two stations with known po-
sitions from where the observations are made. Two important functions used to solve oblique
triangles are the law of sines and the law of cosines.

With the law of sines, the length of the sides of a triangle is related to the sine of opposite angles
(Figure 10.1) (Alves and Silva, 2016).

C

FIGURE 10.1: Oblique triangle used in intersection surveying.

BC  AC  AB
senA  senB  senC

(10.1)

where AB, BC, and AC are the lengths of three sides of the triangle ABC, and A, B, C are the
angles.

In the cosine law, two sides and the internal angle are related to the length of the side opposite
the angle (Alves and Silva, 2016):

BC? = AC? + AB? — 2(AC)(AB)cosA (10.2)
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AC? = AB? + BC? — 2(AB)(BC)cosB (10.3)

AB? = BC? + CA? — 2(BC)(AC)cosC (10.4)

10.5 Intersection of Two Lines Knowing Directions

The situation where the intersection of two lines AP and BP have known coordinates of endpoints
and each line has known direction is called the “direction-direction problem”. The intersection of
a point P can be calculated by simply determining the parts of the oblique triangle ABP. Since
the coordinates of A and B are known, the length and azimuth AB (dotted line) can be obtained
by means of the equations (Figure 10.2) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

FIGURE 10.2: Intersection of two lines with known directions.
We observed that the angle A is obtained by the difference between the azimuths AB and AP:
A=Az p—Azyp (10.5)
Similarly, the angle B is obtained by the difference of the azimuths BA and BP:
B=Azg, — Azpp (10.6)

After determining the two angles of the triangle ABP, the angle P is:
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P=180°—A—B (10.7)
The length of the AP side is:
sen(B)
AP = AB 10.
sen(P) (10.8)

With the known length and azimuth of AP, the coordinates of P are:

Xp=X,+ APsenAz,p (10.9)

The solution can be checked against the length of BP, and using the azimuth of BP to calculate
the coordinates of P. Both solutions must be equal. It should be noted that if the azimuths of the
lines AP and BP are equal, the lines are parallel and there is no intersection (Alves and Silva,
2016).

10.6 Trigonometric Leveling with Intersection Surveying

When the problem is to determine the difference in level between two accessible points separated
by a large distance, or when some points are accessible and others inaccessible, trigonometric
leveling can be used in conjunction with the intersection process (Alves and Silva, 2016).

The difference in level between the topographical points A and C on the terrain is determined as
follows (Comastri and Junior, 1998) (Figure 10.3):

o The instrument is installed at point A. The height of the instrument (A7) at point A is measured.
A base AB is measured, in order to be able to sight, from the ends, the point P, in an inaccessible
place;

e With the instrument centered at endpoint A, we sight the endpoint B. Then, the horizontal
movement of the limb is performed until the point P is focused, stopping the movement of the
limb. The angle BAP =« is recorded, as well as the vertical angle ® 4;

e The instrument is changed from point A to point B. From point B, point A is sighted and then,
the point P, recording the horizontal angle ABC = ( and the vertical angle ® 5.

The difference in level between A and P is obtained by trigonometric leveling (Comastri and
Junior, 1998):

where, if the sighted point P is above the telescope’s axis, the instrument’s height must be added,
and otherwise subtracted from the obtained result.
The distance H 4~ can be determined by:

Hyp _ Hyo _ Hpe
send  senfl  sena

(10.12)
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FIGURE 10.3: Trigonometric leveling of inaccessible points from accessible points.

where 6 = 180° — (a + f),

o H ,psenf
ACT sen[180° — (a + B)]

(10.13)

Replacing H 4 into the equation used to determine the difference in level between A and P:

do H  psenp
AP en[180° — (a + )]

tg® 4 + Ai (10.14)

where the instrument height Ai is added to the result obtained because the targeted point is
above the telescope’s axis.

The difference in level between B and P, (dgp), is obtained by:

As the sighted point P is above the telescope’s axis,

do — Hposena
BP ™ sen[180° — (a + )]

tg®p + Ai (10.16)

The level difference between A and B, (d,p), is obtained by:
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dap = dac—dpc (10.17)

This chapter presented methodologies of coordinate geometry that can be used in planar surveys,
without considering the curvature of the Earth. For geodetic calculations, the n-vector method
(Gade, 2010) presented simple and non-singular solutions, for any global position for different
problems of geographical position calculations such as (Spinielli, 2020):

o Given path A going through A; and A,, and path B going through B; and B,, find the inter-
section of the two paths.

Geodetic calculations involving coordinate systems are presented in more detail in Chapter 12.

10.7 Computation

As a computation practice, the objective is to use the intersection method where two lines AP and
BP have known endpoints coordinates and each line has known direction, called the “direction-
direction problem”. The intersection of point P is calculated by a simple method by determining
the parts of the oblique triangle ABP. Since the coordinates of A and B are known, the length
and azimuth AB is determined by applying equations and the law of sine. The coordinates of
vertex P are determined by intersection, and then the results are checked by determining the
same coordinates from another vertex.

The circular R package (Lund et al., 2017a) is used to convert angular measurements from de-
grees to radians and trigonometry operations to determine the coordinates of the vertex P by the
intersection method. The LearnGeom package (Jammalamadaka and SenGupta, 2001; Briz-Redon
and Serrano-Aroca, 2020) is used for mapping vertices in the surveyed area by the intersection
method. The rgdal package is used to perform projection and coordinate transformation opera-
tions by means of the PR0J library (Bivand et al., 2021), in order to transform coordinate vertices
into spatial points with attributes and map them. The sp class objects are exported to KML and
ESRI Shapefile formats and mapped in R via the maptools package (Bivand et al., 2020a) and in
Google Earth.

10.7.1 Installing R packages

The install.packages function is used to install the R packages circular, LearnGeom, rgdal and
maptools in the R console.

## install.packages("circular')
## install.packages ("LearnGeom')
## install.packages("rgdal")

## install.packages ("maptools')

10.7.2 Enabling R packages

The library function is used to enable the R packages circular, LearnGeom, rgdal and maptools
in the R console.
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library(circular)
library(LearnGeom)
library(rgdal)
library(maptools)

10.7.3 Calculate the coordinates Xp, Yp

The following UTM coordinates and azimuth observations are made: X, = 503142.10 m E; Y,
= 7654216.99 m E; X = 503211.00 m E; Y5 = 7654195.00 m N; Az, p = 198°22'26.04"; Azpp
= 198°41"36.24".

An illustration of the area of interest is made to verify the tower in the Serra da Bocaina to the
South, south of Lavras city, as well as vertices A and B, to the North of the region (Figure 10.4).
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FIGURE 10.4: Illustration of intersection survey performed from vertices A and B to determine
the UTM coordinates of the vertex P.

A database is created with information of plane coordinates of longitude and latitude of vertices
A and B, in UTM projection, UTM zone 23S.

# Create a database with information on vertices A and B
verticesAB <- c('A', 'B")

XAB <- ¢(503142.1000, 503211.0000)

YAB <- ¢(7654216.9900, 7654195.0000)
intAB<-data.frame(verticesAB, XAB, YAB)

intAB



240 10 Coordinate Geometry of Intersection Surveying

## verticesAB XAB YAB
## 1 A 503142.1 7654217
##t 2 B 503211.0 7654195

The difference between the longitude and latitude coordinates of vertices A and B on the X and
Y axes is determined and stored in the same table created earlier.

# Calculate delta XAB and delta YAB
dxl <- intAB$X[2] - intABS$X[1]
dyl <- 1intAB$Y[2] - intAB$Y[1]
intAB<-cbind (intAB, dx1, dyl)

intAB

## verticesAB XAB YAB dx1 dyl
## 1 A 503142.1 7654217 68.9 -21.99
## 2 B 503211.0 7654195 68.9 -21.99

The horizontal distance between vertices A and B is determined using the Pythagorean theorem,
according to the difference between the longitude and latitude coordinates of A and B.

# Determine the distance between vertices A and B
HAB <- sqrt((intAB$dx1[1]72)+(intABSdy1[1]"2))
HAB

## [1] 72.32406

The azimuth between vertices A and B is calculated by the arc tangent function of the differences
between the longitude and latitude coordinates of A and B. Since the values of dy are negative,
the value of 180° is added to the end of the azimuth determination equation.

# Determine AB azimuth
AZAB <- deg(atan(intAB$dx1[1]/intAB$dy1[1]))+180
AZAB

## [1] 107.7009

The internal angle at A is determined as a function of the difference between the azimuth AB
(Az,p) and the azimuth AP (Az,p). The interior angle at B is determined by extending the
azimuth AB at vertex B, adding 180° and subtracting the azimuth BP. The internal angle at P
is determined by considering that the sum of the internal angles of a triangle equals 180°, that is,
the angle at P is determined by the difference between 180° and the sum of the internal angles A
and B.

# Determine the interior angles of triangle A, B, and P
AZAP <- (198+22/60+26.04/3600)
AZAP
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## [1] 198.3739

AZBP <- (198+41/60+36.24/3600)
AZBP

## [1] 198.6934

A <- AZAP - AZAB
A

## [1] 90.67299

B <- (AZAB + 180) - (AZBP)
B

## [1] 89.00751

P <- 180 - (A + B)
[

## [1] 0.3195

Having the internal angles at B, P and the horizontal distance between AB, the distance AP is
determined by the law of sines.

# Determine the distance between A and P by the law of sines
HAP <- HAB*sin(rad(B))/sin(rad(P))
HAP

## [1] 12967.96

Then the X and Y coordinates of vertex P are determined, using the coordinate transport from
A to P, through the absolute coordinate determination of P.

# Register X and Y coordinates of A and B
XA <- 503142.10

YA <- 7654216.99

XB <- 503211.00

YB <- 7654195.00

# Determine X and Y coordinates of P

XP <- XA + sin(rad(AZAP))*HAP

XP
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## [1] 499054.4

YP <- YA + cos(rad(AZAP))*HAP
YP

## [1] 7641910

XP_1<-format(XP, digits=4, nsmall=4)
XP_1

## [1] "499054.3815"

YP_1<-format(YP, digits=4, nsmall=4)
YP_1

## [1] "7641910.1401"

10 Coordinate Geometry of Intersection Surveying

The X and Y coordinate results of P are checked by performing the coordinate transport from
B to P and the equation for determining the absolute coordinates of P.

# Determine the distance between B and P

HBP <- HAB*sin(rad(A))/sin(rad(P))
HBP

## [1] 12969.01

# Determine X and Y of P for checking
XP1 <- XB + sin(rad(AZBP))*HBP
XP1

## [1] 499054.4

YP1 <- YB + cos(rad(AZBP))*HBP
YP1

## [1] 7641910
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# Check the results based on segment BP
XP1<-format (XP1l, digits=4, nsmall=4)
XP1

## [1] "499054.3815"

YP1<-format(YP1l, digits=4, nsmall=4)
YP1

## [1] "7641910.1401"

# check ok!

The results with X and Y coordinates of P are merged into a single database, along with the
vertices A and B.

# Merge the results into one database

vertices <- c('A', 'B', 'P")

X <- c(503142.1000, 503211.0000, 499054.3815)

Y <- c¢(7654216.9900, 7654195.0000, 7641910.1401)
points<-data.frame(vertices, X, Y)

points

## vertices X Y
## 1 A 503142.1 7654217
## 2 B 503211.0 7654195
## 3 P 499054.4 7641910

The dataset is exported for later use as .txt file.

write.table(points, file = "E:/Aulas/Topografia/Aula9/pontos.txt", sep = " ",
row.names = TRUE, col.names = TRUE)

10.7.4 Mapping vertices by the R package LearnGeom

After obtaining the UTM coordinates of vertices A, B and P, the dimensions of X, Y axis are
defined to map the surveyed vertices. Then the polygon A, B, P is drawn, in a gray color (Figure
10.5).
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# Set dimensions of x,y axis

X_min <- 498950.00

X_max <- 503400.00

y_min <- 7641500.00

y_max <- 7654500.00

# Draw the x,y axis

CoordinatePlane(x_min, x_max, y_min, y_max)
A <- c(points$X[1],points$Y[1])

B <- c(points$X[2],points$Y[2])

P <- c(points$X[3],points$Y[3])

# Draw the polygon
Draw(CreatePolygon(A,B,P), "gray", label=T)

Y
7844000 7648000 7648000 7650000 7652000 7654000

7642000

FIGURE 10.5: Intersection coordinate mapping using the LearnGeom package.



10.7 Computation 245

10.7.5 Converting vertices to spatial points with attributes and KML

Before mapping the cadastral vertices and .kml file, it is necessary to define the data columns
with coordinates in the dataset and apply the UTM map projection system to the vertices.
The coordinates of the vertices are re-projected to the WGS-84 geographic projection with the
spTransform function for the subsequent mapping.

# Define columns with coordinates

pointsGeo<-points

coordinates (pointsGeo) <- c("X", "VY")

# Define and apply UTM map projection system

prj_mg <- CRS("+init=epsg:32723") #South of MG

projastring(pointsGeo) <- prj_mg

# Reproject to WGS84 geographic projection

prj_wgs84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")

points_wgs84 <- spTransform(pointsGeo, CRS= prj_wgs84) #Transform to WGS84

The vertices with the geographic coordinates are exported as two distinct file types: ESRI Shapefile
and KML.

## # Export as SpatialPointsDataFrame

## writeOGR (obj=pontosGeo,

## dsn="E:/Aulas/Topografia/Aula9/pontosGeo.shp",

## layer="pontosGeo", driver="ESRI Shapefile")

## # Export as KML

## writeOGR (pontos_wgs84,

## dsn="E:/Aulas/Topografia/Aula9/pontos_wgs84.kml",
# layer= "pontos_wgs84", driver ="KML",

## dataset_options=c("NameField=name"))

10.7.6 Mapping vertices by the R package maptools

The vertices are also mapped by the maptools package and the labels are used to identify the
vertices on the map (Figure 10.6).

plot(pointsGeo, axes=T)
pointLabel(coordinates(pointsGeo),labels=pointsGeo$vertices)

10.7.7 Mapping the vertices with Google Earth

The file points_wgs84.kml has been loaded in the source directory, requiring the Google Earth
application installed on the computer to visualize it (Figure 10.7).
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FIGURE 10.6: Mapping coordinates defined by the intersection method in maptools.

10.8 Solved Exercises

10.8.1 A trigonometric intersection survey is performed between landmarks
A, B and C, installed on a mountain. Determine the level differences
between A and B, A and C, and B and C, based on the following data:

A: - With the instrument on A: o = 87°10"; 5 = 83°20" ; ¢4, = +5° 12’; AiA = 1.50 m; H,p =
40.00 m. - With the instrument on B: o« = 87°10"; 5 = 83°20"; ¢ = +4° 55’; AiB = 1.48 m; H 5
= 40.00 m.

A: The differences in level between A and B, A and C, and B and C are 23.4068, 22.3026, and
1.1042 m, respectively.
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FIGURE 10.7: Mapping coordinates defined by the intersection method in Google Earth.

do H ,psenf
ACT sen[180° — (a + B)]

tgP 4 + Ai = +23.4068 m

do = H ,psena
BC ™ sen[180° — (a + B)]

tgPp + Ai = +22.3026 m

# Calculations performed in R

dAC<-((40*(sin(rad(83+20/60))))/
(sin(rad(180-(87+10/60+83+20/60)))))*tan(rad(5+12/60))+(1.5)

dAC

## [1] 23.40684

dBC<-((40*(sin(rad(87+10/60))))/
(sin(rad(180-(87+10/60+83+20/60)))))*tan(rad(4+55/60))+(1.48)
dBC

## [1] 22.30263

(10.18)

(10.19)

(10.20)
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dAB<-dAC-dBC
dAB

## [1] 1.10421

10.9 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Perform a practice with the intersection method in the field.
Determine X, Y coordinates of the inaccessible point and check the results.

10.10 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 10.1.

TABLE 10.1: Slide shows and video presentations on intersection coordinate geometry.

Guide Address for Access
1 Slides on polygonation and coordinate geometry in intersection surveying'
2 Intersection computations?
3 Surveying orientation and intersection®

10.11 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 10.2).

1http: //www.sergeo.deg.ufla.br/geomatica/book/cl10/presentation.html#/
2https ://youtu.be/AC3unwXFMuI
3http5 ://youtu.be/u7XLrQg39hM
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TABLE 10.2: Practical and research activities used or adapted by students using intersection
coordinate geometry.

Activity Description
1 Apply the intersection method to define the coordinates of an inaccessible point
and present the advantages and disadvantages of the method
2 Apply the intersection survey method in the field using topographic equipment.
Evaluate the difficulties obtained according to the options available for surveying
3 Conduct a survey of how the intersection method can be used in leveling situations.

Perform a data simulation according to the example provided by the teacher in the
chapter’s theoretical approach

10.12 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Coordinate Geometry of Intersection Surveying with Geo-
matics and R”, on a single A4 page in order to show the student’s abilities to summarize a subject
presenting key points considered of greater importance today.



Taylor & Francis
Taylor & Francis Group
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Traverse Area Evaluation and Surveying Memorial

11.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e How to determine the area of closed-path polygon from topographic survey data.
o How to draw up a descriptive report and inverse calculation from topographic survey data.
e What is the difference between a textual descriptive report and a spreadsheet?

e How to determine area from polygon and geospatial polygon survey data automatically in R
and R packages.

11.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

o Evaluate area of closed-path polygon from topographic survey data.

e Prepare a descriptive report and inverse calculation from topographical survey data.

e Prepare a descriptive report in text and spreadsheet format.

o Compare calculated areas of polygons by the functions gArea, from package st_area, and
st_area, from package sf.

e Perform a computational practice of area calculation using the R packages circular, sf, rgdal,
rgeos and maptools.

11.3 Introduction

Determining the area of polygons is important for describing property or details of interest in
neighboring areas, as well as for providing support for volume calculations. Based on this mea-
surement, we can determine how to manage rural and urban areas or use the area as a criterion to

define property values and tax payments. Field and map measurements can be used to determine
the area of a location.

Various geometric, analytical, and mechanical methods can be used to determine areas, such as
(Alves and Silva, 2016):

o Division of land into simple figures of triangles, rectangles, and trapezoids;

DOLI: 10.1201/9781003184263-11 251
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¢ Removal from a straight line;

o Calculating coordinates;

e Double meridian distances;

o Counting pixels of an image referring to the map;
o Digitizing map coordinates;

e Applying a planimeter on map.

It should be noted that for legal and administrative purposes, the area of a plot of land is calculated
as a function of horizontal projections of the boundary lines that delimit the land on the horizontal
plane of reference, i.e., it is different from the surface area obtained from inclined distances (Silva
and Segantine, 2015).

An area calculation method is considered analytic when instead of using known equations to
calculate areas of elementary geometric figures, data such as measurements of directions, distances,
or known coordinates of polygon vertices are used to calculate area (Silva and Segantine, 2015).
These methods are discussed below to exemplify how to calculate the area obtained by surveying.

11.4 Area Assessment by Radial Traverse Surveying

The calculation of area by irradiation can be done based on the angle and distance measurements
used when making a radial polygon (Silva and Segantine, 2015) (Figure 11.1):

1
A= B Ez[HZ-HHsen(AzZ-le — Az,)] (11.1)

where H is the horizontal distance from the anterior vertex, H,, ;, the horizontal distance from
the posterior vertex, Az;, the observed direction at the anterior vertex and, Az, , the observed
direction at the posterior vertex.

The calculation of the area of a polygon obtained by the irradiation method can also be performed
in a practical way, by arranging the coordinates of the points in two columns X and Y, repeating
the coordinates of the first point at the last point as performed in the irradiation Chapter 8, by
the method of matrix determinants of order two (Alves and Silva, 2016).

11.5 Area Assessment by Closed-Path Traverse Surveying

The analytical method of area calculation by coordinates is one of the most used. This method
can be applied for computational calculation of areas of geometric figures where coordinates are
digitized. Only one equation can be applied for all geometric configurations of closed polygon
shapes.

The area calculation can be performed in a practical way by arranging the coordinates of the
points in two columns X and Y, repeating the coordinates of the first point at the last point as
performed in the previous chapters by matrix determinants of order two.

Another method used in area calculation can be accomplished by the double meridian distance
method (Figure 11.2). In this method, an expression is used to calculate the double area, based
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FIGURE 11.1: Radial triangles used in area calculation in the irradiation method.
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FIGURE 11.2: Polygon area calculation using the double meridian distance method.
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on the binary sums of X, multiplied by the binary differences of Y (Table 11.1) (Alves and Silva,
2016).

TABLE 11.1: Area calculation using the double meridian distance method with clockwise
registration of coordinates in the spreadsheet from the first to the last vertex.

Absolute  Absolute

Station Abscissa  Ordinate Binary Sum Binary Difference Double Area
N X Y X Y X Y XY YX
1 1 1 2 3 +0  +1 +2 40
2 1 2 3 4 +1 40 +0 44
3 2 2 4 3 +0 -1 —4 40
4 2 1 3 2 -1 40 +0 -2
sum(+) +2 44
sum(-) -4 =2
double area -2 42
area = +2/2 =1m?
——

11.6 Trapezoidal Polygon Area Assessment

Trapezoidal polygon area assessment can be made by the trapezoids or Bezout’s method. In this
case, a succession of trapezoids measured along the polygon is assumed with a perpendicular
offset at fixed distances of 10 10 m or 20 = 20 m. The practical approximation lies in assuming
that the points A, B, C, D, ..., n are connected by straight lines, which is not strictly accurate.
This equation is easy to apply and widely used, especially when using graph paper (Borges, 2013)
(Figure 11.3).

The area calculated by the Bezout equation (Ag) is (Garcia and Piedade, 1987; Borges, 2013)
(Figura 6.21):

AB:%;%H+%;%H+M+&;%EH (11.2)

Putting H/2 in evidence,

H
Ap =:g;(yl4-2y24-2y34-~-4-2yn+1+-yn) (11.3)

where the total area is equal to H /2 times the sum of the y, with the extreme y values (E) being
summed once and the middle y (M) being summed twice:

H
Ap = §(E+2M) (11.4)
The calculation of the depth of marine profiles has been analyzed by engineers and researchers
over decades due to its relevance in maritime works such as beach sustainability or coastal defense
projects. Quantification of transverse sediment transport was performed from profile surveys in
a coastal region of Spain. The differences between various criteria based on the change in sea

bottom elevation were studied in order to assess the relevance for engineering works (Aragonés
et al., 2019).
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FIGURE 11.3: Succession of trapezoids along a polygon line with the same distance H.

11.7 Area Computation

Most area calculations of polygons can be performed by computer programs to generate consistent
results with simple operations. However, it may be necessary to convert the geometry from point-
type attribute vectors to polygon-type attribute vectors before performing area calculation. If the
polygon on which we wished to calculate the area is already available in digital form, depending
on the program used, we can calculate the area of the polygon with a simple press of the mouse
button, or by scrolling the edges of the polygon with the mouse pointer. Another option in some
situations, is to send the file to cloud programs on the Internet in specific extensions where it is
possible to calculate the area, as an example of the KML or shapefile formats.

11.8 Inversing Calculation and Surveying Memorial

In the polygonal adjustment, corrections are applied to longitudes and latitudes to obtain adjusted
values. These values are used to calculate X and Y coordinates of the polygon stations. As the
longitude and latitude line values are modified in the adjustment process, the length and azimuth
values are also modified. This made it necessary to calculate the final or adjusted lengths and
directions.

The vertices used in the area calculation can be defined based on the map of points surveyed
in the area of interest. Next, a descriptive memorial is prepared, including the boundary line,
longitude, latitude, horizontal distance, azimuth, boundary type and confrontation between the
alignment of each vertex with the subsequent vertex (Table 11.2) (Alves and Silva, 2016).
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TABLE 11.2: Example of table used to elaborate a descriptive memorial.

Boundary  Longitude Latitude Azimuth Distance Boundary
Line (m) (m) () (m) Type Confrontation

If the longitude (AX) and latitude (AY") of an alignment ¢ are known, the length (H), bearing
(B) and azimuth (Az) can be obtained by the inverse calculation:

H; = \/AX? + AY? (11.5)

[AX,|

(3

) (11.6)

where it is necessary to observe the sign of the partial longitude and latitude to determine the
quadrant of the bearing as Northeast (NE), if AX and AY > 0, Southeast (SE), if AY < 0 and
AX > 0, Southwest (SW), if AX < 0 and AY < 0 and, Northwest (NW), if AX < 0 and AY >
0.

AX,
Ay ) O (11.7)

(3

Azyp =tg!(

where C'is 0°, if AX and AY > 0; 180°, if AY < 0; and 360°, if AX < 0 and AY > 0.

The longitude and latitude equations can be expressed in terms of rectangular plane coordinate
differences:

AX; =X, — X, (11.8)

7

AY, =Y, -, (11.9)

where i + 1 and 7 are the back and front vertices that defined the alignment, respectively.

Azimuth calculation has been used to determine the direction of buried pipelines through synthetic
array of emitters, single survey line and scattering matrix formalism. These results are relevant in
civil engineering applications where accurate azimuth is required and it is not possible to acquire
data following 2D grids due to obstacles on the ground surface (Bullo et al., 2016).

11.9 Computation

As a computation practice, the objective is to calculate the area of a soccer field with the mea-
surements obtained by irradiation survey and, of a closed-path polygon traverse obtained walking
survey with irradiations of a building in the campus of the Federal University of Mato Grosso,
Brazil. In the case of the soccer field survey, the vertices are converted to polygon type features
and the area is calculated by the gArea function of the rgeos package. In the case of the area
demarcated by irradiations in a walking survey, the double meridian distance method is used
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for area calculation from the longitude and latitude plane coordinates of vertices. The inverse
calculation of azimuths and clockwise distances is performed, and a descriptive data table and an
example in textual format are prepared. The vertices are converted into polygon type features to
check the area calculation by the gArea function.

The R package circular (Lund et al., 2017a) is used for angle conversion to perform the inverse
calculation. The package rgdal is used to perform coordinate projection operations via the library
PROJ (Bivand et al., 2021), in order to transform coordinate vertices into vector attribute features.
Polygon area calculation is performed using the R packages rgeos (Bivand et al., 2018) and sf
(Pebesma et al., 2021). The polygons are mapped by the R package maptools (Bivand et al.,
2020a).

11.9.1 Installing R packages

The {install.packages function is used to install the circular, sf, rgdal, rgeos and maptools
packages in the R console.

## install.packages ("circular')
## install.packages("sf")

## install.packages("rgdal")

## install.packages("rgeos")

## install.packages ("maptools")

11.9.2 Enabling R packages

The library function is used to enable the circular, sf, rgdal, rgeos and maptools packages in
the R console.

library(circular)
library(sf)
library(rgdal)
library(rgeos)
library(maptools)

11.9.3 Convert vertices to polygons and calculate the area using the rgeos
package

The survey data with irradiations are obtained from the computing practice performed in Chapter
6 about stadia technique, where the edges of a polygon are surveyed by vertices irradiated from
a base installed in the center of a soccer field. The read.table function is used to import the file
to perform the area calculation based on the length and direction measurements.

field<-read.table("files/irrl.txt", header = TRUE, sep = " ", dec = ".")

The UTM map projection system, UTM zone 2185, is applied to the vectors that defined the X
and Y coordinate vertices of the survey database.
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# Define columns with coordinates

irrField <-field

coordinates(irrField) <- c("X", "VY")

# Define and apply UTM map projection system
prj_mt <- CRS("+init=epsg:32721")##MT
projastring(irrField) <- prj_mt

The vertices are converted into a spatial polygon (simple feature) by the SpatialPolygons-
DataFrame function. A map projection is associated with the polygon, as well as a database for
cadastral use.

# Convert points to polygon

pField <-Polygon(irrField)

psField <- Polygons(list(pField),1)

spsField <- SpatialPolygons(list(psField))

# Associate a map projection to the polygon
projastring(spsField) <- CRS("+init=epsg:32721")

# Associate a database

data <- data.frame(f=99.9)

# Join the database to the polygon

spdfField <- SpatialPolygonsDataFrame(spsField,data)

The area defined by the polygon is determined by the gArea function from the R package rgeos.

gArea(spdfField)

## [1] 9779.432

The polygon is mapped with identifying information for the vertices that defined the geometry of
the polygon, using the plot and pointLabel functions from the R package maptools (Figure 11.4).

plot(spdfField, axes=T, col='gray")
pointLabel(coordinates(spdfField),labels=spdfField$vertices)

11.9.4 Calculate the area from vertices of irradiations defined by closed-path
polygon traverse

Another area is calculated from the vertices of irradiations using the double meridian distance
method. The irradiation data are obtained from the computing practice performed in Chapter 9,
in which the extremities of a polygon are surveyed by vertices irradiated from a counterclockwise
walking survey by closed-path polygon traverse. Four bases installed around a building in the
Federal University of Mato Grosso, Brazil are used in the surveying. The read.table function is
used to import the file to perform area calculation based on length and direction measurements.
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8273950
1

8273300
|

8273850
|

599800 599850 599900 599950

FIGURE 11.4: Mapping a soccer field and polygon identifier code with the sp and maptools
packages.

irr<-read.table("files/irr2.txt", header = TRUE, sep = " ", dec = ".")

The double meridian distance method is used to calculate area from plane longitude and latitude
coordinates of the vertices of the building’s radiations. Binary sum and difference are determined
for X and Y and, the double area XY, Y X. The summation of the positive and negative results
of the XY and Y X columns is performed and then the area determination with the result check.

# Determine the binary sum for Xi and Yi
sx6_1<-irr$Xi[6]+irrsXi[1]
Sx5_6<-irr$Xi[5]+irrsXi[6]
sx4_5<-irr$Xi[4]+irrsXi[5]
SX3_4<-irr$Xi[3]+irr$Xi[4]
sx2_3<-irr$Xi[2]+irr$Xi[3]
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SX1_2<=drr$Xi[1]+irr$Xi[2]
sx<-c(sx6_1, sx5_6, sx4_5,
Sy6_1<-irrs$Yi[6]+irrsYi[1]
Sy5_6<-irrs$Yi[5]+irrs$Yi[6]
sy4_5<=irr$Yi[4]+irr$Yi[5]
Sy3_4<—irr$Yi[3]+irrsyi[4]
Sy2_3<=rr$Yi[2]+irrsYi[3]
syl 2<=irrs$Yi[l]+irrs$Yi[2]
sy<-c(sy6_1, sy5_6, sy4_5,

# Determine the binary difference

dx6_1<-irr$Xi[6]-irr$Xi[1]
dx5_6<-irr$Xi[5]-irr$Xi[6]
dx4_5<-irr$Xi[4]-irr$Xi[5]
dx3_4<-9rr$Xi[3]-irr$Xxi[4]
dx2_3<-drr$Xi[2]-irrs$Xi[3]
dx1_2<=drr$Xi[1]-irrs$Xi[2]
dx<-c(dx6_1, dx5_6, dx4_5,
dy6_1<-irr$Yi[6]-irr$Yi[1l]
dy5_6<-1irr$Yi[5]-irrs$Yi[6]
dy4_5<-1irr$Yi[4]-irr$Yi[5]
dy3_4<-1irr$Yi[3]-irr$Yi[4]
dy2_3<-irr$Yi[2]-1irr$Yi[3]
dyl_2<-irr$Yi[1]-drrs$Yi[2]
dy<-c(dy6_1, dy5_6, dy4_5,

# Determine the double area Xi*Y1i

# X1*Y1
adXY1<-sx6_1*xdy6_1
adXvy1l

## [1] -9178547

adXY2<-sx5_6*xdy5_6
adXy2

## [1] -4020481

adXY3<-sx4_5*xdy4_5
adXy3

## [1] -11335801

adXY4<-sx3_4xdy3_4
adXvy4

## [1] -5740400

sx3_4,

sy3_4,

dx3_4,

dy3_4,
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sx2_3, sx1_2)

sy2_3, syl_2)
for X1 and Y1i

dx2_3, dx1_2)

dy2_3, dyl_2)
and Yi*X1
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adXY5<-sx2_3*xdy2_3
adXY5

## [1] 20100264

adXY6<-sx1_2*xdyl_2
adXYe6

## [1] 10174495

adXY <- c(adXYl, adXY2, adXY3, adXY4, adXY5, adXY6)

# Sum of the positive and negative results of columns XY and YX
sadXYplus <- sum(adXY[which(adXY>0)])

sadXYminus <- sum(adXY[which(adXY<0)])

# YixX1

adYX1<-sy6_1xdx6_1

adYX1

## [1] 84637648

adYX2<-sy5_6xdx5_6
adYX2

## [1] -87441673

adYX3<-sy4_5xdx4_5
adYX3

## [1] 105082388

adYX4<-sy3_4*xdx3_4
adYX4

## [1] -124701851
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adYX5<-sy2_3*xdx2_3
adYX5

## [1] -182520957

adYX6<-syl_2*xdx1_2
adYX6

## [1] 204944915

adYX <- c(adYX1l, adYX2, adYX3, adYX4, adYX5, adYX6)

# Sum of the positive and negative results of columns XY and YX
sadYXplus <- sum(adYX[which(adXY>0)])

sadYXminus <- sum(adYX[which(adXY<0)])

# Determining the area

area<-(sadXYplus + sadXYminus)/2

area

## [1] -235.323

# Checking
area<-(sadYXplus + sadYXminus)/2
area

## [1] 235.323

The area obtained is 235.323 m2.

The results of data columns used to determine binary sum, binary difference and double area are
joined to the original irradiation measurement data by means of the cbind function.

irrArea<-cbind(irr,sx, sy, dx, dy, adXyY, adyX)

The write.table function is used to organize the database into file in .txt extension.

## write.table(irrArea, file= "E:/Aulas/Topografia/Aulal@/irrArea.txt",
## sep = " ", row.names = TRUE, col.names = TRUE)



11.9 Computation 263

11.9.5 Perform the inverse calculation and prepare the descriptive memorial

The inverse calculation of azimuths and distances is performed from the first vertex, clockwise, in
order to draw up a descriptive memorial referring to the polygon surveyed in the field. For this,
a database with the measurements and irradiation adjustment calculation memory of a building
is imported through the read.table function.

irrArea<-read.table("files/irrArea.txt", header = TRUE,
sep = " n’ dec = u'n)

The azimuth and distance calculations for alignments made around the building are determined
from inverse calculation equations to determine longitude and latitude angular and linear mea-
surements obtained from the absolute X and Y coordinates of vertices.

# Azimuth calculation
Az1l_6<-deg(atan(irrArea$dx[1]/irrArea$dy[1]))+180
Azl1l_6

## [1] 146.2243

Az6_5<-deg(atan(irrArea$dx[2]/irrAreasdy[2]))+180
Az6_5

## [1] 237.6286

Az5_4<-deg(atan(irrArea$dx[3]/irrAreasdy[3]))+180
Az5_4

## [1] 146.0846

Az4_3<-deg(atan(irrArea$dx[4]/irrAreasdy[4]))+180
Az4_3

## [1] 237.5982

Az3_2<-deg(atan(irrArea$dx[5]/irrAreasdy[5]))+360
Az3_2

## [1] 326.6306
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Az2_1<-deg(atan(irrArea$dx[6]/irrAreasdy[6]))+0
Az2_1

## [1] 55.60936

Az<-c(Azl_6, Az6_5, Az5_4, Az4_3, Az3_2, Az2_1)

# Calculating distances

H1_6 <- sqrt((irrArea$dx[1]72)+(irrAreas$dy[1]72))
H1_6

## [1] 9.200217

H6_5 <- sqrt((irrAreas$dx[2]72)+(irrAreasdy[2]72))
H6_5

## [1] 6.256556

H5_4 <- sqrt((irrAreas$dx[3]22)+(irrAreasdy[3]72))
H5_4

## [1] 11.38115

H4_3 <- sqrt((irrArea$dx[4]72)+(irrArea$dy[4]72))
H4_3

## [1] 8.925581

H3_2 <- sqrt((irrArea$dx[5]22)+(irrAreasdy[5]72))
H3_2

## [1] 20.05342

H2_1 <- sqrt((irrAreas$dx[6]22)+(irrAreasdy[6]72))
H2_1

## [1] 15.00859
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H<-c(H1_6, H6_5, H5_4, H4_3, H3_2, H2_1)

P<-sum(H)
P

## [1] 70.82552

# Display X and Y coordinates with 4 decimal places

X1<-format(irr$Xi[1]
X1

## [1] "600105.9978"

X6<-format (irr$Xi[6]
X6

## [1] "600111.1126"

X5<-format (irr$Xi[5]
X5

## [1] "600105.8283"

X4<-format (irr$Xi[4]
X4

## [1] "600112.1787"

X3<-format (irr$Xi[3]
X3

## [1] "600104.6427"

X2<-format (irr$Xi[2]
X2

## [1] "600093.6126"

, digits=4, nsmall=4)

, digits=4, nsmall=4)

, digits=4, nsmall=4)

, digits=4, nsmall=4)

, digits=4, nsmall=4)

, digits=4, nsmall=4)
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X<-c(X1, X6, X5, X4, X3, X2)

Y1i<-format(irr$Yi[1],
Y1

## [1] "8273801.4628"

Y6<-format (irrs$yi[6],
Y6

## [1] "8273793.8154"

Y5<-format (irrs$Yi[5],
Y5

## [1] "8273790.4656"

Y4<-format (irrs$yi[4],
Y4

## [1] "8273781.0208"

Y3<-format(irrs$Yi[3],
Y3

## [1] "8273776.2380"

Y2<-format(irrs$yi[2],
Y2

## [1] "8273792.9854"

digits=4,

digits=4,

digits=4,

digits=4,

digits=4,

digits=4,

Y<-c(Y1l, Y6, Y5, Y4, Y3, Y2)
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nsmall=4)

nsmall=4)

nsmall=4)

nsmall=4)

nsmall=4)

nsmall=4)

With the results of longitude, latitude, azimuth and horizontal distance, information about bound-
ary type and the confrontation for each alignment are added to the descriptive memorial. Then,
a database is organized with rows and columns of these variables.
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# Descriptive memorial in table
Vertice <- c("i1", "d6", "i5", "q4", wi3"  nqom)
Boundary <-c("masonry'", "masonry", "masonry'", "masonry", "masonry",
"masonry")
Confrontation <- c("UFMT campus", "UFMT campus", "UFMT campus",
"UFMT campus", "UFMT campus", "UFMT campus")
memorial <-cbind(Vertice, X, Y, Az, H, Boundary, Confrontation)

The descriptive memorial database is exported by the write.table function in .txt file format.

## write.table(memorial, file= "E:/Aulas/Topografia/Aulal®/memorial.txt",
## sep = " ", row.names = TRUE, col.names = TRUE)

11.9.6 Descriptive textual memorial

The descriptive textual memorial is made with information from the database previously used in
the inverse calculation, as follows:

The perimeter description is started by means of longitude (X) and latitude (Y) coordinates
from vertex 1 (X = 600105.9978 m; Y = 8273801.4628 m) going to vertex 6 (X = 600111.1126
m; Y = 8273793.8154 m) with azimuth of 146.224277173901° and distance of 9.20021694736941
m, masonry border and confronting the university campus; from vertex 6, followed to vertex 5
(X = 600105.8283 m; Y = 8273790.4656 m), with azimuth of 237.62857327939° and distance
of 6.25655590885889 m, masonry boundary and confronting the university campus; from ver-
tex 5, proceeding to vertex 4 (X = 600112.1787 m; Y = 8273781.0208 m), with azimuth of
146.084587371097° and distance of 11.3811485699373 m, masonry boundary and confronting the
university; from vertex 4, proceeding to vertex 3 (X = 600104.6427 m; Y = 8273776.2380 m),
with azimuth of 237.598199434916° and distance of 8.92558141699616 m, masonry boundary and
confronting the University campus; from vertex 3, followed to vertex 2 (X = 600093.6126 m;
Y = 8273792.9854 m), with azimuth of 326.63061226206° and distance of 20.0534227306883 m,
masonry boundary and confronting the university campus; from vertex 2, followed to vertex 1,
with azimuth of 55.6093648494757° and distance of 15.0085933710381 m, masonry boundary and
confronting the university campus. The perimeter is 70.82552 m and the area, 235.323 m?. The
coordinates are described in the 21S UTM plane coordinate system. The map of the surveyed
property and the data spreadsheet are presented below.

11.9.7 Descriptive memorial in spreadsheet
The descriptive memorial can also be described in table format as an annex to the descriptive

textual memorial. To do this, you must import the table to view the summary using the read.table
function.

memorial<-read.table("files/memorial.txt", header = TRUE, sep = " ",
dec = ".")

memorial # Viewing table in R

## vertice X Y Az H divisa confrontante
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## 1 il 600106.0 8273801 146.22428 9.200217 alvenaria campus da UFMT
## 2 i6 600111.1 8273794 237.62857 6.256556 alvenaria campus da UFMT
## 3 i5 600105.8 8273790 146.08459 11.381149 alvenaria campus da UFMT
## 4 i4 600112.2 8273781 237.59820 8.925581 alvenaria campus da UFMT
## 5 i3 600104.6 8273776 326.63061 20.053423 alvenaria campus da UFMT
## 6 i2 600093.6 8273793 55.60936 15.008593 alvenaria campus da UFMT

11.9.8 Mapping the polygon

The polygon mapping described in the textual descriptive memorial and in the table is used
to characterize the vertices used in the area computation. To map the polygon, irradiations are
previously converted from point to polygon type features.

# Import shapefile of irradiation vertices

irrGeo <- readOGR(dsn="files/irrGeo.shp", "irrGeo")
# Convert points into polygon and assign UTM coordinate system
pIrr<-Polygon(irrGeo)

psIrr<- Polygons(list(pIrr),1)

spsIrr <- SpatialPolygons(list(psIrr))
proj4string(spsIrr) <- CRS("+init=epsg:32721")

# Create database for the polygon

data = data.frame(f=99.9)

# Convert to attribute polygon

spdfIrr <- SpatialPolygonsDataFrame(spsIrr,data)

Next, we map the polygon and the vertices’ information (Figure 11.5).
plot(spdfIrr, axes=T, col='"gray")

pointLabel(coordinates(spdfIrr),labels=spdfIrrs$vertices)

11.9.9 Calculate polygon area using gArea function

For checking purposes, the polygon area that characterized the irradiated building is checked by
using the gArea function of the rgeos package.

gArea(spdfIrr)

## [1] 235.323

11.9.10 Calculate polygon area using st_area function

The st_area function from the R package sf is applied to calculate the polygon area allowing to
obtain the same building area value by different methods and functions.
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8273785 8273790 8273795 8273800
1 1 1 1

8273780
1

600090 600095 600100 600103 600110 600113

FIGURE 11.5: Mapping polygon geometry and label information of a building using the
maptools R package.

# Convert to sf feature
Irrsf<-st_as_sf(spdfIrr)

## Warning in CPL_crs_from_input(x): GDAL Message 1: +init=epsg:XXXX syntax is
## deprecated. It might return a CRS with a non-EPSG compliant axis order.

# Calculate the polygon area
st_area(Irrsf)

## 235.323 [m"2]
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# Check Ok!

11.9.11 Export the polygon

Finally, the SpatialPolygonsDataFrame of the irradiated university campus building is exported
as ESRI Shapefile with the write0GR function, for further use.

## writeOGR (spdfIrr,dsn="E:/Aulas/Topografia/Aulal®/spdfIrr.shp",
#H layer="'spdfIrr", driver="ESRI Shapefile')

.|
11.10 Solved Exercises

11.10.1 Calculate the area of field survey data by the radiation method. Check
the results by another method.

Field survey data used is based on the following data (Table 11.3):

TABLE 11.3: Field survey data by the radiation method.

Vertex Horizontal Distance (m) Horizontal Angle

1 882.371 0°0’0"

2 808.679 129°14’01"
3 1157.491 203°56"42"
4 825.571 255°03'37"

A: The data is organized into rows and columns to perform area calculation by different methods
using the function data.frame. The angle values in degrees, minutes and seconds are converted to
decimal degrees to perform the calculations.

pto<-c(1, 2, 3, 4)

H<-c(882,371, 808,679, 1157,491, 825,571)

AH<-c (0, 129+14/60+1/3600, 203+56/60+42/3600, 255+3/60+37/3600)
data<-cbind(pto, H, AH)

data<-data.frame(data)

The area of 1451645.6153 m? is obtained using the radial triangles method for area calculation.

# Perform area calculation by radial triangles

Al<-data$H[2]*data$H[1]*sin(rad(datasAH[2]-data$AH[1]))
A2<-data$H[3]*data$H[2]*sin(rad (data$AH[3]-data$AH[2]))
A3<-data$H[4]*data$H[3]*sin(rad(data$AH[4]-data$AH[3]))
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A4<-data$H[1]*data$H[4]*sin(rad(data$AH[1]-data$AH[4]))
# Determine area

A<-(sum(Al,A2,A3,A4))/2

A

## [1] 774156.1

# Determine area with 4 decimal places
A<-format (A, digits=4, nsmall=4)
A

## [1] "774156.0529"

Then, the polygon area is determined by the matrix determinants of order two method to evaluate
the results. The longitude and latitude values are calculated.

x<- data$Hx*(sin(rad(data$AH)))
X

## [1] 0.0000 287.3668 -327.9345 -656.0482 0.0000 380.3156 -334.8341
## [8] -551.6988

y<- data$H* (cos(rad(data$AH)))
Yy

## [1] 882.0000 -234.6515 -738.4599 -175.0480 1157.0000 -310.5495 -753.9968
## [8] -147.2053

In the calculation of absolute coordinates, the value 2000 is added to X and Y in order to obtain
positive absolute coordinates for each vertex.

X<- 2000+x
X

## [1] 2000.000 2287.367 1672.066 1343.952 2000.000 2380.316 1665.166 1448.301

Y<- 2000+y
Y

## [1] 2882.000 1765.349 1261.540 1824.952 3157.000 1689.450 1246.003 1852.795

The calculated absolute coordinates are added to the original dataset.
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data<-cbind(data, X, Y)
The area obtained by the matrix determinants of order two is 1451645.6153 m?.

# Determine sum of the ascending products
X2_Y1 <-data$x[2]*-datasY[1]

X3_Y2 <-data$X[3]x-datas$Y[2]

X4_Y3 <-data$x[4]*-datasY[3]

X1_Y4 <-data$X[1l]x-datas$Y[4]
sumAsc<-sum(X2_Y1l, X3_Y2, X4_Y3, X1_Y4)

# Determine sum of the descendant products
X1_Y2 <-data$X[1l]x-datas$Y[2]

X2_Y3 <-data$X[2]x-datas$Y[3]

X3_Y4 <-data$X[3]*-datasY[4]

X4_Y1 <-data$X[4]x-datas$Y[1]
sumDesc<-sum(X1_Y2, X2_Y3, X3_Y4, X4_Y1)
# Determine area

area<-(sumAsc-sumDesc) /2

# Determine area with 4 decimal places
area<-format(area, digits=4, nsmall=4)
area

## [1] "-774156.0529"

The same result is obtained by different area calculation methods based on checking the results.

11.10.2 A polygon traversing was defined by a succession of trapezoids. De-
termine the polygon area by Bezout’s method, based on the following
data:

e The values obtained are H =20 m, y1 = 1.8 m, y2 = 3.5 m, y3 = 4.7 m, y4 = 5.5 m, y5 = 5.8
m, y6 = 5.4 m, y7 = 3.8 m.

A: The area is 554 mZ2.

# Calculations performed in R
A<-(20/2)*((1.8+3.8)+(2*(3.5+4.7+5.5+5.8+5.4)))
A

## [1] 554

11.11 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Perform a practice with a closed-path polygon traversing method
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in the field. Determine X, Y coordinates of the vertices, perform area calculation, descriptive
memorial and mapping.

11.12 Resources on the Internet

As a study guide, it is requested to view the slides and illustrative videos about the subject
covered in the chapter in Table 11.4.

TABLE 11.4: Slide shows and video presentations on area calculation in surveying.

Guide Address for Access
1 Slides on area calculation in surveying'
2 Area computation in surveying using coordinates®
3 Computation of areas®

11.13 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 11.5).

TABLE 11.5: Practical and research activities used or adapted by students using area calcula-
tion in surveying.

Activity Description
1 Check different methodologies for area calculation and evaluate which is the best
method, providing advantages and disadvantages
2 Determine the area of a closed polygon based on a topographical survey conducted
in the field using plane coordinate information
3 Determine the area of a closed polygon based on a topographical survey carried out

in the field using an automatic calculation method based on an R package.
Compare the results obtained by another methodology

1http://www.sergeo.deg.uf'La.br/geomat'ica/book/cll/presentat'ion.html#/
2https://www.youtube.com/watch?v:thqu84oyxM
3https://www.youtube.com/watch?v:Kg_CNxx3ch
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Activity Description

4 Perform the inverse calculation of coordinates and prepare the text surveying
memorial of a topographic survey

11.14 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Traverse Area Evaluation and Surveying Memorial with
Geomatics and R”, on a single A4 page in order to show the student’s abilities to summarize a
subject presenting key points considered of greater importance today.
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Coordinate Reference Systems for Geodetic

12.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e How to define coordinate reference systems.

e How to check and assign a coordinate reference system in geographic data with R.

o How to determine Euclidean and geodesic distance between vertices with R.

e How to determine the geodetic area of closed-path polygon traverses with R.

o What is the applicability of EPSG geodetic parameter dataset and the function proj4string in
topographic surveys?

e Whether there is a difference between area calculated on SIRGAS-2000, SAD-69, Chua, and
Corrego Alegre 1961 ellipsoids.

12.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

o Know concepts involved in coordinate reference systems (CRSs) applied to vector and raster
type data with R.

e Check and assign a coordinate reference system in geographic data.

e Determine Euclidean and geodetic distance between vertices.

o Calculate geodetic area of polygons.

¢ Evaluate the applicability of EPSG geodetic parameter dataset and the function proj4string
in topographic surveys with R.

o Compare area calculated on STRGAS-2000, SAD-69, Chua, and Cérrego Alegre 1961 ellipsoids.

12.3 Introduction

The “datum” is a term that meant geometric reference in geomatics and has been used to define
a referential for position of geometric elements in space or in a topographic mapping. The set
of information defining shapes, size, origin and orientation of coordinate systems established
positioning of points on the Earth’s surface with geodetic reference by a geodetic datum. After
determining and deploying a geodetic datum for a region or a country, a network of points with
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coordinates referenced to that datum must be deployed, called the “geodetic coordinate reference
system” (Silva and Segantine, 2015).

Geodetic surveys have been used to establish horizontal and vertical accuracy of reference mon-
uments and have been used as a basis for generating or checking survey projects such as topo-
graphic and hydrographic mapping, boundary demarcation, route definition, construction plan-
ning, among others. The established references have been essential as support for the use of
geographic and Earth information systems (Ghilani and Wolf, 1989; Alves and Silva, 2016).

General types of geodetic datum are: horizontal and vertical. With the horizontal datum, plani-
metric positions of points on the Earth’s surface are established through latitude, geodetic lon-
gitude, direction and parameters that defined a reference ellipsoid. With the vertical datum,
references are established to determine orthometric altitudes of points over large areas. Plane
coordinates, such as those of the Universal Transverse Mercator (UTM) system can be calculated
based on values defined in geodetic surveys (Silva and Segantine, 2015; Alves and Silva, 2016).

Different methods can be used to define a network of geodetic control points in order to extend the
understanding about the Earth’s shape and mass. Extending the network of geodetic control points
can be accomplished by leveling, accurate polygonals, very long base interferometry, satellite laser
mapping, Global Navigation Satellite System (GNSS) observations, and gravity surveys. The
accumulation of these data can be used to update and extend existing control data, as well as
to accurately define the geometric shape of the Earth (Kavanagh and Slattery, 2015). GNSS has
been used for control surveys over extensive areas, nationally and continentally. GNSS surveys
have been rapidly replacing other existing control surveying methods with advantages related to
ease of use, speed, and extremely high accuracy over large distances. GNSS surveying can also
be used to establish vertical control, but with limitations due to the need to obtain an accurate
geoidal model as a reference. The horizontal control survey with GNSS has been used to determine
geodetic latitudes and longitudes of points associated with geoid and ellipsoid (Alves and Silva,
2016).

Control grids can be used as a reference for the point structure used in (Schofield et al., 2007):

o Topographic mapping and large-scale production planning;

e Dimension control in construction;

¢ Surveying deformation of structures;

e Augmentation and densification of existing control networks.

To establish a geodetic reference system, it is necessary to include definitions about (Silva and
Segantine, 2015):

e The topographic or physical surface, with relief irregularities, mountain ranges, valleys, fields,
oceanic hollows and marshes;

e The geoidal surface, determined as function of the equipotential surface of the Earth’s gravita-
tional field, is considered the real Earth’s shape;

e The geometric surface, determined by a sphere flattened at the poles, is called the “ellipsoid of
revolution”.

12.4 Geoid and Ellipsoid

The horizontal control survey can be used to determine geodetic latitudes and longitudes of ver-
tices. Geoid and ellipsoid definition is necessary for geodetic latitude and longitude determination.
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The geoid is an equipotential gravitational surface at any location, perpendicular to the direction
of gravity. The geoid is irregularly shaped due to variations in the Earth’s mass distribution and
rotation (Figure 12.1) (Ghilani and Wolf, 1989; Schofield et al., 2007; Alves and Silva, 2016).
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FIGURE 12.1: Illustration of setting ellipsoid and geoid on the Earth (left) and an equipotential
surface (right).

The magnitude of gravity force is greater in relation to the Earth’s center of mass than to the
latitude. Gravity is also affected by the Earth’s mass distribution and density variations. The
shape of the Earth is defined by gravity. If the Earth is a molten material with homogeneous
density, unaffected by the gravitational field of external bodies, and does not rotate on its own
axis, then by gravitational attraction, the Earth’s surface can be described as a sphere. The
biggest source of error in this ideal model occurs because of the Earth’s rotation. The centrifugal
force at the Equator acts in the opposite direction to the gravitational force, so that the Earth
is best described by an ellipse of rotation around its minor axis, called by the synonymous terms
“ellipsoid” or “spheroid” (Schofield et al., 2007; Alves and Silva, 2016).

By imagining the oceans, which make ~70% of the Earth’s surface, as a flow of channels intercon-
nected by land masses, the equipotential surface would be formed approximately at mean sea level,
disregarding frictional effects, winds and tides, among others. On this surface, the gravitational
potential would be the same at any point. Thus, the level lines never cross. Therefore, the geoid is
a surface of physical reality where the surface can be measured. Although the gravitational poten-
tial is the same at any location, the value of gravity is not. The magnitude of the gravity vector
at any point is corresponding to the rate of change of the potential gravity at that point. The
geoid surface is smoother than the Earth’s physical surface, but still contains many irregularities
that make it undesirable for planimetric mathematical position location. These irregularities are
caused by mass anomalies along the Earth (Schofield et al., 2007; Alves and Silva, 2016).

Since the direction of the gravity vector, called “vertical”; is normal to the geoid, the surveyor’s
plumb line is defined by this vector. Therefore, any instrument leveled by plumb line will be refer-
enced by the equipotential surface that passes through the instrument. The elevation defined by
the equipotential surface passing through mean sea level is called “orthometric altitude”. Ortho-
metric altitude is the linear distance measured along the gravity vector of a point on the surface
in relation to the equipotential surface used as a reference datum. As the geoid characterized an
equipotential surface adjusted to mean sea level, the measured heights refer to altitudes above
or below mean sea level. Thus, it is observed that orthometric altitudes are datum dependent.
Similarly, mean sea level varies on the geoid by about 3 m at the poles and Equator, mainly as
a function of temperature variation. Therefore, elevations referring to a specific datum cannot be
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the same as those established by another country’s datum (Schofield et al., 2007; Alves and Silva,
2016).

The ellipsoid is defined as a mathematical surface obtained by the revolution of an ellipse on
the Earth’s polar axis. The dimensions of the ellipsoid are selected to determine a good fit of
the ellipsoid on the geoid over large areas, based on surveys conducted in the area. The ellip-
soid approximated the geoid and can be mathematically defined to calculate positions of points
separated by large distances in control and geodetic surveys (Alves and Silva, 2016).

The first accurate terrestrial ellipsoid was determined by German astronomer Friedrich Wilhelm
Bessel (1784-1846) in 1841. In Brazil, three ellipsoids are considered (Silva and Segantine, 2015):

« International Ellipsoid of 1924 (Hayford), on which the Cérrego Alegre datum is based;

o Reference Ellipsoid of 1967, on which the Chué datum is based, referenced to the South American
Datum of 1969 (SAD-69);

o Ellipsoide Geodetic Reference System of 1980 (GRS-80), on which is based the Geocentric
Reference System for the Americas (SIRGAS-2000).

Currently, the Geodetic Reference System of 1980 (GRS-80) and the Geodetic Global Reference
System of 1984 (WGS-84) have been used as reference in several countries because they showed
satisfactory fit to the geoid and ease of use in GNSS surveys (Alves and Silva, 2016). The size
and shape of ellipsoids can be defined by two parameters called semi-axis a, b and flattening f,
where f = 0 describes a sphere geometry (Table 12.1) (Silva and Segantine, 2015; Alves and Silva,
2016).

TABLE 12.1: Definition of ellipsoid parameters used in geomatics.

Ellipsoid Semi-axis a (m) Semi-axis b (m) Flattening f Use
GRS-80 6378137.0 6356752.314140356 1/298.25 Global
(ITRS),
Brazil, United
States
WGS-84 6378137.0 6356752.314245179 1/298.25 Global (GPS)
Hayford- 6378388.0 6356911.946127947 1/297.00 United States
1924 / Europe
Cérrego 6378388.0 6356911.946127947 1/297.00 Brazil
Alegre
GRS-1967 6378160.0 6356774.516000000 1/298.24 Australia
SAD-1969 6378160.0 6356774.719000000 1/298.25 South
America

The flattening of the ellipsoid can be described by (Ghilani and Wolf, 1989; Hager et al., 1989;
Schofield et al., 2007; Alves and Silva, 2016):
b a—1>

f=1-m=— (12.1)

where a is half of the major axis and, b, half of the minor axis of the Earth’s ellipsoid of revolution
around the PP’ axis (Figure 12.2) (Schofield et al., 2007; Alves and Silva, 2016).

Other variables used in ellipsoid calculation are the first eccentricity (e), the first quadratic ec-
centricity (e?), the second eccentricity (¢’) and the second quadratic eccentricity (e’?) (Ghilani
and Wolf, 1989; Hager et al., 1989; Schofield et al., 2007; Alves and Silva, 2016):
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where the polar semi-axis (b) is approximately 21 km smaller than the equatorial semi-axis (a) for
each ellipsoid. This means that the ellipsoid approaches the shape of a sphere. This assumption
can be used in some situations with length calculations on the order of 50 km away.

By assuming the ellipsoid as a sphere, the radius and volume of the reference ellipsoid are equated
to those of the sphere (Ghilani and Wolf, 1989; Alves and Silva, 2016):

r = va2b

(12.6)

The spherical distance between two points on the Earth’s surface that are at the same distance
from the center of the spheroid representing the Earth is measured over the arc generated by
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the spheroid containing the two points. In practice, reductions from topographic to ellipsoidal
distances are performed by considering the ellipsoid as a spheroid of radius equal to the local
mean radius of the Earth at the latitude of the point. It may be irrelevant whether the Earth is a
spheroid or an ellipsoid for conventional topographical calculations (Silva and Segantine, 2015).

12.5 Conventional Terrestrial Reference System

The ellipsoid is defined on the basis of the size of an ellipse rotated around the Earth’s polar
axis. Since the Earth’s principal axis of inertia does not coincide with the Earth’s axis of rotation,
the polar axis does not show a fixed position at a given time. This motion can be subdivided
into two categories: precession and nutation. Precession is the largest of the movements that ran
along the polar axis for a long period of time. By international convention, the Earth’s mean
axis of rotation is defined between the years 1900 and 1905. This position is called the “Earth’s
Conventional Terrestrial Pole” (CTP) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

CTP defines the Z axis of a 3D Cartesian coordinate globe with the positive north portion.
The positive X axis is located in the mid-equatorial plane and started at the Earth’s center
of mass, passing through the Greenwich meridian. The Y axis is located in the mid-equatorial
plane, generating a Cartesian coordinate system to the right. This coordinate system has come to
be known as the “Conventional Terrestrial Reference System” (CTS) (Figure 12.3) (Ghilani and
Wolf, 1989; Alves and Silva, 2016).

12.6 Geodetic Position and Ellipsoidal Radii of Curvature

The position of a vertex P on the surface can be defined by means of the latitude, longitude and
geodetic altitude values, ¢p, Ap, hp, respectively. The vertex P located on the Earth’s surface is
represented by P’ on the ellipsoid along the normal (Figure 12.4).

Meridians are large circles on the circumference of the ellipsoid that pass through the north and
south poles. Any plane containing a meridian and the polar axis is a meridian plane. The angle
in the equatorial plane from the Greenwich meridian passes through P defining the geodetic
longitude (Ap) of the vertex. The plane defined by the vertical circle passing through the vertex
P, perpendicular to the meridian plane in the ellipsoid is called the “main vertical” or “normal
section”. The radius of the main vertical at point P is called the “normal radius” (R ) because
it is perpendicular to a plane tangent to the ellipsoid at P. The geodetic latitude (¢p) is the
angle in the meridian plane containing P between the equatorial plane and the normal at P.
The geodetic altitude (hp) should be included to define the location of point P on the Earth’s
surface. The geodetic altitude is the distance measured along the length of the normal from P’
on the ellipsoid to P on the Earth’s surface. The geodetic altitude is not equal to the elevation
determined by differential leveling. The great circle that defined the prime vertical at P has a
radius of the normal section (R, ) that differs from the radius at the meridian (R,,) at P. The
radius of the great circle (R,) at any azimuth « in relation to the meridian is different from Ry
or R,; (Ghilani and Wolf, 1989; Hager et al., 1989; Alves and Silva, 2016):

a

V1 —e2sen?¢p

Ry = = Ry, (1 +e%cos?¢) (12.7)
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FIGURE 12.3: Conventional Earth system with nutation and precession movements of the
Earth’s polar axis.
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*  Rycos’a+ Ry sen’a

where a and e are parameters of the ellipsoid and, ¢, the geodetic latitude of the station at which
the radius is calculated.

We observed that R is equal to R, at the poles under ¢ = 90°. Considering that (1 - €?) is less
than one, the radius of the prime vertical Ry is greater than the meridian radius R;; at all other
locations under ¢ # 90°.

The local mean radius of the Earth’s curvature can be understood as the radius of a sphere
tangent to the reference ellipsoid at the point of interest. The mean radius is calculated by
geometric averaging the radius at the meridian and the radius of the normal section (Silva and
Segantine, 2015):

Ry = /Ry Ry (12.10)
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FIGURE 12.4: Definition of different radii and a vertex P on the ellipsoid.

12.7 Geoid Undulation and Deflection of the Vertical

Measurements with topographic equipment can be made relative to the ellipsoid or the geoid,
yielding different results. Therefore, it is important to know the conceptual differences between
height, altitude, normal line and vertical line of a place (Silva and Segantine, 2015):

e Height: Dimension of a body from the base to the top;

o Altitude: Value of the elevation of a point relative to a vertical datum;

o Normal line or Normal of the point: Line that intercepts the topographic surface, perpendicular
to the ellipsoidal surface;

o Vertical line of the point: Tangent line to the line of gravitational force that intercepted the
topographic surface, perpendicular to the geoidal surface and that can be materialized by a
plumb line.

The geoid is an equipotential surface defined by gravity. If the Earth is represented by a perfect
ellipsoid with no internal density variations, the geoid would correspond perfectly to the ellipsoid.
However, the geoid may be 100 m or more away from some ellipsoids, depending on the local-
ity. Traditional survey instruments have been oriented in reference to gravity and therefore the
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observations obtained will be relative to the geoid. The separation between geoid and ellipsoid
determines the difference between the height of the point above the ellipsoid (geoidal altitude)
and above the geoid (orthometric altitude), known as elevation. This difference, called “geoidal
altitude” or “geoidal separation” geoidal separation”, can be observed when comparing the geode-
tic altitude of a point obtained by GNSS survey with the elevation determined by leveling. The
relationship between the orthometric altitude (H) and the geodetic altitude (h) at any point is
(Figure 12.5) (Ghilani and Wolf, 1989; Silva and Segantine, 2015; Alves and Silva, 2016):

h=N+H (12.11)

where N is the geoidal altitude.
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FIGURE 12.5: Relationship between the ellipsoid and the geoid.

The altitude on the geoid surface is established from a permanent landmark, natural or artificial,
called “vertical datum”. The vertical datum is determined from measurements of tidal variations
over a period of time. In Brazil, the Brazilian Institute of Geography and Statistics (IBGE) used
information collected by a tide gauge station in Imbituba, Santa Catarina, to define the vertical
datum of the Brazilian Geodetic System. Since the geoid and the ellipsoid rarely coincide, it is
necessary to consider the height difference (N) between them for geodetic and topographic calcu-
lations. The height difference between the geoid and the ellipsoid is named “geoidal undulation”
or “geoidal height” (Silva and Segantine, 2015).

In Brazil, the MAPGEO geoidal undulation model is used as a computational system to provide
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the geoidal undulation (N) used in the conversion of geometric altitudes obtained by geospatial
positioning techniques by positioning satellite systems (GNSS) into altitudes consistent with the
High Precision Altimetric Network (RAAP) of the SGB, made available by the IBGE. The geoidal
undulation can be obtained for one or more points quickly and practically, requiring fundamental
knowledge associated with the surfaces (physical, geoidal and ellipsoidal) and references adopted
in Geodesy as the Geocentric Reference System for the Americas (SIRGAS-2000) and the South
American Datum 1969 (SAD-69), enabling the user to analyze more consistently the results
obtained (Chuerubim, 2013).

Another geometric effect arising from the geometric inconsistency between the geoid and the
ellipsoid is the vertical deflection. The deflection of the vertical at any point P is the angle
between the vertical (vertical deflection) and the normal in relation to the ellipsoid. This angle is
generally determined by two components: the orthogonal projections onto the meridian and the
normal planes. The zenith of the equipotential surface at field level is called the “astronomical
zenith” Z 4, because it corresponds to the direction of gravity (zenith) of a leveled instrument
during astronomical observations. The Z is the normal at point P. The projected components of
the total vertical deviation in the meridian and normal planes are denoted by £ and 7, along the NS
and EW directions, respectively. The meridian (NS) component () is positive when located north
of the normal to the ellipsoid. The prime vertical (EW) component (7) is positive when located
east of the normal to the ellipsoid (Figure 12.6) (Ghilani and Wolf, 1989; Silva and Segantine,
2015; Alves and Silva, 2016).
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FIGURE 12.6: Components of the vertical deflection.

With the leveling of topographic equipment relative to the vertical of the site, there is an angular
difference between the tangent of the vertical of the site and the line normal to the ellipsoid, called
the “vertical offset”. The vertical offset can vary from approximately 5” in flat regions to 30” in
mountainous regions (Silva and Segantine, 2015).
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The components, &, on the meridian line and, 7, perpendicular to the meridian section, can be
calculated by (Ghilani and Wolf, 1989; Silva and Segantine, 2015; Alves and Silva, 2016):

§=0¢s—0¢ (12.12)
n=(Ay — Ag)cosp = (Az, — Azg)cotp (12.13)

Laplace’s equation can be derived from this equation by:
Azg = Azy — (A4 — Ag)seng = Az, — ntang (12.14)

where ¢4 and ¢ are the astronomical and geodetic latitudes, A4 and A4, the astronomical and
geodetic longitudes, and Az, and Az, the astronomical and geodetic azimuths, respectively.

12.8 Coordinate Reference Systems

The use of a coordinate system made it possible to (Silva and Segantine, 2015):

e Determine the position of a topographic point through coordinates;

o Standardize calculation methods to define topographic points;

o Unify individual systems into a single overall system to simplify the identification and manage-
ment of topographic points in a single project.

In geomatics, the following coordinate systems have been described (Silva and Segantine, 2015):

o Cartesian plane coordinate system or plane-rectangular system;
e Plane polar coordinate system;

o Spatial Cartesian coordinate system;

o Geodetic geographic coordinate system.

12.8.1 Cartesian plane coordinate system

The Cartesian plane coordinate system or plane-rectangular system is one of the best known in
geomatics. This system consisted of two geometric axes in the same plane and perpendicular to
each other forming quadrants. The primary, horizontal axis is the abscissa (X) and the vertical
axis is the ordinate (Y'). The vertical axis is adopted as the origin axis for the directions and the
clockwise angular direction as positive. The direction is indicated by the azimuth angle formed
by the vertical axis and the alignment considered (Silva and Segantine, 2015).

12.8.2 Plane polar coordinate system

The plane polar coordinate system is defined by a fixed point of origin or pole, a direction (polar
angle) relative to a reference axis, and by a distance (radius vector) between the origin and the
point at which the coordinates are to be determined. This system has been used in observations
of horizontal distances with field-sighted surveying instruments (Silva and Segantine, 2015).
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12.8.3 Spatial Cartesian coordinate system

The spatial positioning of a point can be determined in a Cartesian system with the addition of a
third Z axis to the Cartesian plane coordinate system or the polar plane coordinate system. The
7 axis is added perpendicular to the plane established by the X,Y axes. The geocentric spatial
Cartesian system is used to determine the position of points in space by positioning satellites
and GNSS signal receiving antennas. In this case, the system origin is defined at the center of
the Earth, the X, Y axes at the Equator and the Z axis, coincident with the Earth’s medium
rotation axis and the X axis, intersecting a meridian adopted as reference. In this system, the Z
coordinate is perpendicular to the plane of the Equator and the ellipsoidal height, h, is normal to
the reference surface. Since there is a difference between the Z coordinate and the ellipsoidal height
h, an increase in h will produce an equal increase in Z only at the poles (Silva and Segantine,
2015).

12.8.4 Geodetic geographic coordinate system

In the geodetic geographic coordinate system, the coordinates have been determined on a surface of
a reference ellipsoid rather than on a spherical surface, as in the case of the geographic coordinate
system. The geodetic coordinate system is based on the axis of rotation of the reference ellipsoid
and the plane of the Equator. The meridian lines pass through the poles determining elliptical
surfaces. Parallels occur perpendicular to meridians, with a maximum circle in the equatorial
plane. For geodetic latitudes and longitudes, there is a specific meridian and the Equator plane as
the origin for determining arcs over the reference surface. The geodetic latitude (¢) of a point on
the reference surface is defined by the angular value of the arc formed by the straight line normal
to that surface between the point and the Equator plane. Geodetic latitudes are referenced from
the Equator from 0 to 90° in the Northern Hemisphere (N), and from 0 to -90° in the Southern
Hemisphere (S). The geodetic longitude (A) of a point on the reference surface is the value of
the dihedral angle formed between the meridian plane passing through the point, with the plane
passing through the meridian plane of origin. Geodetic longitudes are referenced to the Greenwich
meridian and ranged from 0 to 360° for East (E) and, from 0 to -180° for West (W). Since the
reference ellipsoid is flattened, the normal line that defined the geodetic latitude of a point does
not pass through the center of the ellipsoid (Silva and Segantine, 2015).

12.9 Coordinate Reference System Transformation

In coordinate transformation, a mathematical operation is used to relate two different coordinate
systems in order to characterize the position of a point in different systems. The main coordinate
transformations between plane coordinate systems are the transformations of coordinates from
Cartesian system to polar system, between two Cartesian coordinate systems, and the transfor-
mation of spatial Cartesian coordinates to geodetic geographic coordinates and vice versa. The
transformation from rectangular to polar coordinates and vice versa is widely used in geomatics
when measurements are performed in the field in a polar coordinate system and the topographic
map representation is on rectangular coordinate system. With the advent of GNSS, there is a
need to transform spatial Cartesian coordinates into geodetic coordinates and vice versa. The
positions determined by GNSS are initially obtained in spatial coordinates (X, Y, Z) which are
later transformed into plane coordinates (E, N, H) for use in engineering projects (Silva and
Segantine, 2015).
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12.10 Geodetic Calculation Algorithms

In geodetic position calculations, there are direct and inverse problems. In direct problems, the
latitude and longitude of a station can be calculated as a function of the latitude and longitude
of another station, the geodetic length and azimuth of the alignment between the two stations.
For lines determined over large extents, it is necessary to consider the shape of the ellipsoid to
obtain satisfactory accuracy. In inverse geodetic problems, the latitude and longitude values of an
alignment are used to determine the geodetic length and azimuth between two points (Ghilani and
Wolf, 1989; Alves and Silva, 2016). Algorithms for computing geodetic position on an ellipsoid of
revolution with accurate results, robust and fast solutions to direct and inverse geodetic problems
are obtained in Karney (2013).

Algorithms for solving geodesic problems using calculators are summarized in the work of Vincenty
(1975), based on earlier work such as that of Helmert (1964). The algorithms used to calculate
geodetic distance, azimuth and area are adapted from these works for use on modern computers.
Some improvements over previous methods are (Karney, 2013):

e Precision is increased to match the standard precision of most computers;

¢ An inverse problem solution is used to converge all pairs of points overcoming shortcomings
observed by Vincenty’s method;

o Differential and integral properties of geodesics are calculated in order to enable the calculation
of scales of geodesic projections without resorting to numerical differentiation;

o Differential properties and integrals are used in solving the inverse problem, with a method to
obtain the area of a geodesic polygon, extending the work of Danielsen (1989).

A number of functions have been developed in sf with ellipsoidal geometries via the lwgeom
R-package (Pebesma and Dunnington, 2020):

o Calculation of area of polygons with the function st_geod_area;

e Calculation of line length with the function st_geod_length;

e Calculation of distance between features with the function st_geod_distance;

o Segmentation of lines along great circles with the function st_geod_segmentize.

Geocomputation binary predicates, geometry operators and neighbor functions can be used as if
in the equivalent equirectangular projection or the WGS-84 datum, for example (Pebesma and
Dunnington, 2020):

e Binary predicates: (1’ntersects7 touches, covers, contains, equals, equals_exact, re'Late);

o Geometry generation operators: (centroid, intersection, union, difference, sym_difference);
Neighbor functions: (nearest_point, nearest_feature);

o Other functions: (st_filter, st_join, agreggate).

In traditional cartography, based on map projections, functions are used to map points on the
Earth’s surface onto a plane map. Map projections created distortions because the shape of
the Earth is not plane. For example, the well-known Mercator projection is discontinuous along
the 180° meridian, has large-scale distortions at high latitudes, and cannot represent the north
and south poles. With the R s2 package, this problem is addressed using exclusively spherical
projections. As the name implies, spherical projections are used to map points on the Earth’s
surface onto a mathematically perfect sphere. In these mappings there is still some distortion,
since the Earth is not entirely spherical, but is much closer to a sphere than a plane. With spherical
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projections, it is possible to approximate the entire surface of the Earth with maximum distortion
of 0.56%, preserving the correct topology of the Earth. Although an ellipsoid represents the Earth
better than a sphere, ellipsoidal operations are slower than the corresponding operations on a
sphere. Furthermore, robust geometric algorithms require the implementation of exact geometric
predicates that are not subject to numerical errors.

The geometry library S2' can be used for geospatial operations in R (Dunnington et al., 2021).
This library is written by Google for use in Google Earth, Google Maps, Google Earth Engine,
and Google BigQuery GIS. In the s2 geometry, the straight lines between points on the globe are
not formed by straight lines in the equirectangular projection, but by large circles, according to
the shortest path on the sphere (Pebesma and Dunnington, 2020).

In the R package sf up to version 0.9-x, in geographic coordinate data, one degree of longitude is
equal to one degree of latitude, regardless of its global location, as in this example (Figure 12.7)
(Pebesma and Dunnington, 2020):

library(sf)
library(rnaturalearth)

Earth <- countriesl1l10 %>%
st_as_sf() %>%
st_geometry ()

plot(Earth, axes = TRUE)

This means working in a projection similar to the equirectangular projectionequirectangular pro-
jection, also called equidistant cylindrical projection (in French, la carte parallélogrammatique),
plate carrée or geographic projection (Snyder, 1993), as in this example (Figure 12.8):

EarthP<-st_transform(Earth, "+proj=eqc'")

plot(EarthP, axes = TRUE)

Some advantages of the s2 geometry library are:

o Flexible support for spatial indexing;

¢ Fast in-memory spatial indexing of collections of points, polylines, and polygons;

¢ Robust constructive operations as intersection, union, simplification and Boolean predicates;

o Efficient query operations for finding nearby objects, measuring distances, calculating centroids;

o Flexible and robust implementation of instantaneous rounding;

o Collection of efficient and exact mathematical predicates for testing relationships between geo-
metric primitives;

1 https://s2geometry.io
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FIGURE 12.7: Mapping the Earth in geographic projection.
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FIGURE 12.8: Mapping the Earth in equirectangular projection.
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o Extensive testing on Google’s vast collection of geographic data.

The install.packages function is used to install the s2 package.

install.packages("s2")

The library function is used to enable the s2 package.

library(s2)

The polygon of Brazil is obtained from the world map, from the R package spbata and used to
calculate the geodesic and spherical area of Brazil in a comparative way, considering the WGS-84
ellipsoid. The map of Brazil with the limits is mapped by the plot function (Figure 12.9).

library(spData)

# Perform a subset of Brazil
BrazilWGS84 = world[world$name_long == "Brazil",]

# Mapping
plot(BrazilWGS84[1], axes=T, col='"grey92")

The st_area and s2_area functions are used to perform the geodetic and spherical area calculation
in Brazil, obtaining area values of 8508557 and 8540954 km? for geodetic and spherical areas,
respectively.

al<-units::set_units(st_area(BrazilWGS84),km"2)
al

## 8540954 [kmA2]

a2<-units::set_units(s2_area(BrazilWGS84)/1000000,km"2)
a2

## 8540954 [km"2]

In the s2 package, the Earth’s radius is taken as 6371.01 ki (Yoder, 1995) as the default value
in functions that return a distance or accept a distance as input. Based on this, a difference of
0.37% is observed between area calculations considering the ellipsoid or the sphere.
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FIGURE 12.9: Mapping Brazil from a subset of all countries.

ellipsoid<-8508557
sphere<-8540954
ellipsoid/sphere

## [1] 0.9962069

# Difference in percent
d<-((1-(ellipsoid/sphere))*100)
d

## [1] 0.3793136

A package with algorithms for spherical trigonometry calculations for geographic applications has
been developed to calculate distances and related measurements to angular locations of longitude
and latitude. There are a number of functions to calculate distance and direction (bearing, az-
imuth) along great circles (shortest distance on a sphere) and along rhumb lines (lines of constant
direction). There are also functions that calculate distances on a spheroid. Other functions include
calculating the location of an object according to direction and distance, area, perimeter and cen-
troid of a spherical polygon. Geographic locations must be specified in degrees of longitude and
latitude (Hijmans et al., 2019).

There are four distinct functions for calculating the distance between two points, in order of in-
creasing complexity from the spherical cosine law algorithm, Haversine (Sinnott, 1984), Vincenty’s
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sphere, and Vincenty’s ellipsoid (Vincenty, 1975). The first three assumed the Earth as a sphere,
while in Vincenty’s ellipsoid, as an ellipsoid. The results of the first three functions are identical
for practical purposes. In Haversine’s formula, with the computational precision of the time it is
developed, the accuracy is lower than today, of 15 decimal places. With today’s accuracy, with
the spherical cosine law formula, equal or better results are obtained for very small distances
(Hijmans et al., 2020).

Another option for geodetic, spherical and 3D Cartesian distance and direction measurements is
observed in the R package nvctr (Spinielli and EUROCONTROL, 2020). In this package non-
singular position calculation functions are implemented with functions for geographic position
calculation for ellipsoidal and spherical models (Gade, 2010) in which the normal vector to the
Earth’s ellipsoid (called n vector) is used. This non-singular position representation is convenient
for practical position calculations, simplicity of use, and exact answers for global positions and
distance, in the ellipsoidal, spherical, and Cartesian 3D Earth coordinate models (Spinielli and
EUROCONTROL, 2020).

The n-vector method (Gade, 2010) presented simple and non-singular solutions for problems of
geographical position calculations as (Spinielli, 2020):

¢ Given two positions A and B, find the exact vector from A to B in meters north, east and down,
and find the direction (azimuth/bearing) to B, relative to north using WGS-84 ellipsoid,;

o Given positions A and B, find the surface distance (i.e., great circle distance) and the Euclidean
distance;

e Given three positions A, B, and C, find the mean position (center/midpoint);

e Given position A, an azimuth/bearing and a great circle distance, find the destination point B.

Area calculations can also be applied for large geodetic polygons on the ellipsoid. Test calculations
of geodetic area are performed on administrative units in Poland. For small distances between
points, accurate calculation results are obtained; however, for larger areas, it is recommended to
use equal area map projections to project the ellipsoid into the plane (Pedzich and KuZma, 2012).

12.11 Geodetic Control Network

A geodetic reference network is formed by a set of geodesic points that characterized the Earth’s
topographic surface through landmarks implanted and materialized on the terrain with the fol-
lowing purposes (Silva and Segantine, 2015):

e Service to international scientific projects;
e Tightening and control of geodesic and cartographic works;
e Support for topographic surveys where accuracy criteria are used on Earth simplifications.

In a geodetic reference network, geodetic points are determined according to operational pro-
cedures associated with a geodetic coordinate system, calculated by precision geodetic models,
compatible with the purpose and with a reference ellipsoid that defined the Earth’s geometry.
A geodetic reference system is considered worldwide when the Cartesian variables X,Y, Z are
geocentric and without regional characteristics, with model fit to the global geoid. This system is
considered national when the scope is a specific region or country in which the adopted geometric
model best fitted the geoid in the considered region. The system is considered multinational when
it serves as a basis for geodetic work in several countries (Silva and Segantine, 2015).
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The horizontal and vertical datum consists of a network of monuments and control landmarks
whose horizontal positions or elevations are determined by accurate geodetic control surveys.
These monuments are used as reference points to generate new surveys of all types, and are
referred to as “reference networks”. The process of estimating the coordinates of the physical
points used to define a given benchmark is accompanied by the calculation of a network related
to the surveyed points. The result established by adjustment of observations is a set of coordinate
values for the stations that constituted the materialization of the geodesic system. Usually, it is
common to adopt a single denomination for the definition and materialization of the system by
an abbreviation acronym. In this way, several adjustments of geodetic networks can be performed
in the same referential defined with different injunctions or the same data can be adjusted with
several definitions (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Since 2005 the Brazilian Institute of Geography and Statistics (IBGE), through the Geodesy
Coordination, incorporated in its activities the weekly processing of data from all stations of the
Brazilian Network of Continuous Monitoring of GNSS Systems (RBMC), in order to evaluate the
quality of GNSS observations and the maintenance of the new Geocentric Reference System of the
Brazilian Geodetic System, SIRGAS-2000, officially in use in Brazil from February 2005 (Alves
and Silva, 2016).

The historical goal of geodesy is to obtain a coordinate reference network for common use. How-
ever, many countries or regions developed independent reference networks. With this, it became
necessary to transform coordinates obtained in GNSS surveys to those used in a given reference
network. To perform datum transformations, it is necessary to know the geodetic coordinates
of both reference networks. If a sufficient number of common stations are known, a 3D coordi-
nate transformation system can be used to convert the coordinates of stations from one reference
network to another (Schofield et al., 2007).

It is worth noting that although the GRS-80 ellipsoid is adopted in SIRGAS-2000, there is also
compatibility between the GRS-80 and WGS-84 ellipsoids at the centimeter level, i.e., the dif-
ference between the coordinates calculated in both systems is of the order of 1.0 cm (Silva and
Segantine, 2015).

12.12 Accuracy Standards for Control Surveys

The standard of accuracy for a control survey initially depended on the purpose of the survey.
Some of the factors that affected accuracy are the type and condition of the equipment used, the
field processes adopted, and the experience and capability of the users. Accuracy standards and
geodetic survey specifications are used to:

o Standardize a set of minimum acceptance specifications for control surveys for different purposes;
o Establish specifications for instrumentation, field procedures and error checking in order to
ensure that the intended level of accuracy is achieved.

In Brazil, geodetic points have been classified by IBGE according to the surveying quality as
(Silva and Segantine, 2015):

o High precision geodetic surveys (national);
e Precision geodetic surveys (regional);
¢ Geodetic surveys for topographic purposes (local features).
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The established horizontal accuracy standards for GNSS surveying can vary in accuracy according
to the relative accuracy between the surveyed vertices (Table 12.2):

TABLE 12.2: Horizontal accuracy of control surveying.

Order Precision

Superior 1:100000000
Average 1:100000
Inferior 1:5000

The established vertical accuracy standards vary according to the order of accuracy, from highest
to lowest, where K is the distance between the landmarks in kilometers (Table 12.3) (Ghilani and
Wolf, 1989; Alves and Silva, 2016):

TABLE 12.3: Vertical accuracy of control surveying.

Order Precision Tolerance (m)

First > 1:10000000 0.5 - 0.7 VK
Second  1:10000000  1.0- 1.3 VK
Third < 1:10000000 2.0 VK

The success of a mapping or engineering project is dependent on the control survey used. The
higher the order of accuracy required, the greater the time and cost. Therefore, it is necessary to
select the appropriate order of accuracy for a given project and carefully follow the specifications.
It can be seen that regardless of how the control survey is conducted, there will be errors in the
calculated positions, but a higher order of accuracy assumed that smaller errors would occur.

Surveying equipment must undergo periodic testing followed by the issuance of calibration certifi-
cates. These tests have been performed using comparators and specialized measuring stations. An
instrument is developed to evaluate the calibration of geodetic leveling systems. The instrument
is characterized by a practical interferometric measurement system to comparatively evaluate
digital geodetic leveling equipment from manufacturers such as Leica, Trimble, Topcon, Sokkia
and Zeiss (Kuchmister et al., 2020).

The management of a large and complex research infrastructure requires high accuracy through
geodetic surveying for instrument positioning and rearrangement. For this, a precision geodetic
network based on GNSS and electronic total station measurements has been established to obtain
the positioning and alignment of different elements of the 3 km long Advanced Virgo interferometer
used to detect gravitational waves. Monitoring activity has been carried out over the years by
means of periodic high-precision leveling, compared with differential interferometry results based
on data from on-board synthetic aperture radar (Marsella et al., 2020).

12.13 Control Point Description

Control vertices should be materialized in favorable locations for later use. Vertices should be
monumented and described appropriately for future users. Reference monuments can be marked
with bronze discs attached to concrete or rock structures. Procedures for establishing the monu-
ments vary according to the type of soil or rock, climatic conditions, and the use application of the
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monument. In cases where the ground could be excavated, the monuments are set in concrete of
greater depth. Another option used is a stainless steel rod as a landmark. A complete description
of the control stations should be given, including the installation location in relation to neighbor-
hoods, the precise location of the monument in relation to nearby objects, datum used, geodetic
latitude and longitude, plane coordinates, convergence angle, scale factor, UTM coordinates, ap-
proximate elevation and geoidal elevation (m). It is recommended to place the landmarks 10 cm
above the ground (Figure 12.10)(Alves and Silva, 2016).

Concrete Landmark Point identification plate with

e mounting holes

0
CREDENCIADO

60 cm

Point identification plate with solid

[ shank for fastening

3 mm I—__

5cm
90 cm

Side view

8 mm

FIGURE 12.10: Metallic discs used to describe horizontal and vertical control stations in sur-
veying.
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12.14 Computation

As a computation practice, coordinate reference systems (CRSs) are applied to vector attribute
data, referring to the vertices surveyed point-by-point, and to raster data, referring to georefer-
enced orthoimagery from orbital surveys. CRS enable to define the spatial relationship of objects
to the Earth’s surface. CRSs can be geographic or projected and used at any location on Earth,
described by longitude and latitude values. Longitude is the location in the East-West direc-
tion measured relative to angular distance from the plane of the prime meridian. Latitude is the
angular distance in the North or South direction relative to the equatorial plane. Therefore, ge-
ographical distances in the CRS are not measured in meters. The Earth’s surface in geographic
coordinate systems is represented by spherical or ellipsoidal surface. In spherical models, the sur-
face is represented by a perfect sphere conforming to a specific radius. These models are simple
but inaccurate, since the shape of the Earth is not a sphere. Ellipsoidal models are defined by
the equatorial and polar radii. The equatorial radius is approximately 11.5 km larger than the
polar radius. The ellipsoid parameters are part of the ellps component of the CRS. The precise
relationship between Cartesian coordinates and location on the Earth’s surface are stored in the
towgs84 argument of the proj4string. With this, local variations on the Earth’s surface, for ex-
ample of mountains, are accounted for in a local CRS. There are two types of datum: local and
geocentric. In a local datum, such as STRGAS-2000, the ellipsoidal surface is shifted to align with
the surface at a specific location. In a geocentric datum such as WGS-84, the center of gravity of
the Earth is the center of the coordinate system projection (Lovelace et al., 2019a).

The CRS can be described in R by an EPSG code or a definition of proj4string. Both approaches
have advantages and disadvantages. An EPSG code is shorter and simpler to execute when com-
pared to proj4string. The code also referred to only one well-defined coordinate reference system.
On the other hand, with a definition of proj4string there is more flexibility in specifying different
parameters, such as the type of projection, the datum and the ellipsoid. This made it possible to
specify different projections and modify existing ones. The R packages include support for a wide
variety of CRS and use of the PROJ library. EPSG codes can be obtained from the Internet or by
functions available in R packages, such as in rgdal (Lovelace et al., 2019a).

The EPSG dataset was originally created by European Petroleum Survey Group (EPSG) in 1985
and was made public in 1993. EPSG geodetic parameter dataset is a public registry of geodetic
datums, spatial reference systems, Earth ellipsoids, coordinate transformations and related units of
measurement. Each entity is assigned an EPSG code and the EPSG dataset is actively maintained
by the International Association of Oil and Gas Producers (IOGP) Geomatics Committee (IOGP,
2009, 2012, 2021). For example, the EPSG corresponding to the WGS-84 datum is 4326.

The syntax of PROJ4 consisted of a list of parameters, each prefixed with the + character. For
example, one might cite a UTM projection (+ proj = utm) for UTM zone 23S (4 zone = 23)
and on a WGS-84 datum (+ datum = WGS84). Other bits of information that could be gleaned
from the projection sequence are the units (meters) and the underlying ellipsoid (WGS-84). Some
of the PROJ parameters used in defining a coordinate system are described below in Table 12.4
(Lovelace et al., 2019a):
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TABLE 12.4: Parameters and description of PROJ4 to define coordinate systems.

Parameter Description

+a Radius of semimajor axis of ellipsoid
+b Radius of semiminor axis of ellipsoid
+datum Datum name

~+ellps Elipsoid name

+lat_ 0 Latitude of origin

+lat_ 1 Latitude of first standard parallel
+lat_ 2 Latitude of second standard parallel
+lat_ts True scale latitude

+lon_ 0 Central meridian

+over Longitude beyond -180 to 180, turning off distortion
~+proj Projection name

+south UTM zone in Southern Hemisphere

+units meters, etc.

+x 0 False east

+y_0 False north

+zone UTM zone

As a computation practice, the objective is to observe some datum definitions available in the sf
package, observe EPSG codes interactively in R, check and assign a coordinate system to vertex
data of vector attribute type, determine the Euclidean distance and compare with the geodetic
distance between vertices, calculate the geodetic area of a polygon and of Brazil in SIRGAS-
2000, SAD-69, Chua and Coérrego Alegre 1961 ellipsoids. Finally, a Shuttle Radar Topography
Mission (SRTM) digital elevation model is used as an example of transforming a raster in WGS-
84 geographic projection to SIRGAS-2000.

The package rgdal is used to perform coordinate projection operations through the library PRO3J
(Bivand et al., 2021), in order to transform coordinate vertices into spatial points with attributes.
Polygon area calculation is performed using the sf package (Pebesma et al., 2021). The calcula-
tions of Euclidean distance, geodetic distance and geodetic area are performed with the lwgeom
package (Pebesma et al., 2020b). The algorithms for geodesic calculations are described in Kar-
ney (2013). Spherical area and distance calculations considering the Earth as a sphere are also
performed with the s2 package (Dunnington et al., 2021). Polygons are mapped by the R package
tmap (Tennekes, 2018; Tennekes et al., 2020). The spbata package is used as a source of poly-
gon data with Brazilian borders (Bivand et al., 2020b). The units package is used in area unit
transformation (Pebesma et al., 2020a). The raster package is used to obtain an SRTM digital
elevation model (NASA, 2013) of an area and to transform the geodetic coordinates of the raster
from WGS-84 to STRGAS-2000 (Hijmans et al., 2020).

12.14.1 Installing R packages

The install.packages function is used to install the sf, s2, rgdal, units, lwgeom, spData, tmap
and raster packages in the R console.

## install.packages("sf")
## install.packages("s2")
## install.packages("rgdal")
## install.packages ("units")
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## install.packages ("lwgeom")
## install.packages ("spData")
## install.packages ("tmap")

## install.packages("raster")

12.14.2 Enabling R packages

The library function is used to enable the sf, s2, rgdal, units, lwgeom, spData, tmap, raster
packages in the R console.

library(sf)
library(s2)
library(rgdal)
library(units)
library (lwgeom)
library(spData)
library(tmap)
library(raster)

12.14.3 Observing available datum definitions in sf

The function sf_proj_info is used to enable the package sf.

sf_proj_info(type = "ellps")

12.14.4 Viewing EPSG codes interactively

The EPSG codes available in the rgdal package are obtained using the make_EPSG function. Then
the results are visualized using the view function. Another way to obtain the EPSG code for a
given geographic or plane coordinate system can be through searches on Internet websites such
as Google.

crs_data = rgdal::make_EPSG()
View(crs_data)

12.14.5 Checking and assigning a coordinate system to point vector attribute
data

Vector attribute point data used in surveying with the calculation of coordinates by the intersec-
tion method (Chapter 10) are used to check and assign a coordinate system to vertices and are
imported from the Internet.
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## download. file(url=
## "http://www.sergeo.deg.ufla.br/geomatica/downloads/pontosGeo.zip",
## destfile = "pontosGeo.zip")

The files are unzipped by the unzip function.

## unzip(zipfile = "p.zip")

The directory into which data is imported can be observed with the getwd function.

## getwd()

The topographic survey data are imported with the st_read function and then we observed
information about the file, such as the name of the data columns associated with the vector file.

# Import simple feature point data
pointsGeo <- st_read('"files/pontosGeo.shp")

## Reading layer ‘pontosGeo' from data source

#i "C:\bookdown\surveying-with-geomatics-and-r_R1_03102021\files\pontosGeo.shp'
#Ht using driver “ESRI Shapefile'

## Simple feature collection with 3 features and 1 field

## Geometry type: POINT

## Dimension: XY

## Bounding box: xmin: 499054.4 ymin: 7641910 xmax: 503211 ymax: 7654217

## Projected CRS: WGS 84 / UTM zone 23S

pointsGeo

## Simple feature collection with 3 features and 1 field

## Geometry type: POINT

## Dimension: XY

## Bounding box: xmin: 499054.4 ymin: 7641910 xmax: 503211 ymax: 7654217
## Projected CRS: WGS 84 / UTM zone 23S

## vertices geometry
## 1 A POINT (503142.1 7654217)
## 2 B POINT (503211 7654195)
## 3 P POINT (499054.4 7641910)

# Look up data column names
names (pointsGeo)
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## [1] "vertices" "geometry"

The coordinate reference system (CRS) in the imported file is evaluated with regard to the
projection type and parameters, as well as EPSG, by the st_crs function . This verified the
EPSG: 32723 of the data, referring to World Geodetic System datum, 1984 (WGS-84) and UTM
zone 23 South (23S).

# Check the reference coordinate system on vector data
st_crs(pointsGeo) # get CRS

## Coordinate Reference System:
## User dinput: WGS 84 / UTM zone 23S

## wkt:

## PROJCRS["WGS 84 / UTM zone 23S",

## BASEGEOGCRS["WGS 84",

## DATUM["World Geodetic System 1984",

## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]]],

## PRIMEM["Greenwich",0,

## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4326]7,

## CONVERSION["UTM zone 23S",

## METHOD["Transverse Mercator",

## ID["EPSG",9807]],

# PARAMETER["Latitude of natural origin",o0,

## ANGLEUNIT["Degree",0.0174532925199433],
## ID["EPSG",8801]17,

## PARAMETER["Longitude of natural origin",-45,
## ANGLEUNIT["Degree",0.0174532925199433],
## ID["EPSG",8802]]7,

## PARAMETER["Scale factor at natural origin",0.9996,
i SCALEUNIT["unity",1],

## ID["EPSG",8805]7,

## PARAMETER["False easting",500000,

## LENGTHUNIT["metre",1],

## ID["EPSG",8806]],

## PARAMETER["False northing",10000000,

## LENGTHUNIT["metre",1],

## ID["EPSG",8807]17,

#i CS[Cartesian,2],

## AXIS["(E)",east,

i ORDER[1],

## LENGTHUNIT["metre",1]],

#H# AXIS["(N)",north,

## ORDER[2],

## LENGTHUNIT["metre",1]],

## ID["EPSG",32723]]

If CRS is not configured in the file of interest, we can configure CRSs with the st_set_crs.
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## pointsGeo <- st_set_crs(pointsGeo, 32723) # atribuir CRS

Another way to assign the CRS can be to describe the coordinate system in the +proj parameter

## pointsGeo <- st_set_crs(pointsGeo, "+proj=utm +zone=23 +south +
## datum=WGS84 +units=m +no_defs")

Or configure the coordinate system with the proj4string function, according to the EPSG code
for the coordinate system for spatial data of sp class.

## proj4string(pointsGeo) <- CRS("+init=epsg:32723")# For sp data

12.14.6 Determining Euclidean and geodesic distance between vertices

First of all, the data are organized in rows and columns to calculate the longitude and latitude
between vertices in order to determine the Euclidean and geodesic distance between vertices A
and P, defined by intersection survey from UTM coordinates. Then the Pythagoras theorem is
used to determine the horizontal distance between vertices AP of 12967.96 m.

# Organize data in rows and columns

vertices <- c('A', 'B', 'P")

X <- ¢(503142.10, 503211.00, 499054.3815)

Y <- c(7654216.99, 7654195.00, 7641910.1401)
int<-data.frame(vertices, X, Y)

dx <- int$X[3] - int$X[1]

dy <= int$Y[3] - int$Y[1]

# Determine the distance between vertices A and P
HAP <- sqrt((dx"2)+(dy*2))

HAP

## [1] 12967.96

The distance calculation performed between vertices is checked with the st_distance function
from the lwgeom package, obtaining the same value of 12967.96 m.

# Determine Euclidean distance with the lwgeom package
st_distance(pointsGeo$geometry[1l], pointsGeo$geometry[3])

## Units: [m]
## [,1]
## [1,] 12967.96
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The intersection surveying data in plane coordinate system are transformed to geographic coor-
dinate system, in WGS-84 datum, through the st_transform function.

pointsWGS84 <- st_transform(pointsGeo,
crs= CRS("+proj=longlat +ellps=WGS84 +datum=WGS84"))

The geodesic distance between vertices AP is calculated, considering the terrestrial curvature
characterized by the WGS-84 ellipsoid, in Lavras, Minas Gerais, Brazil. The st_geod_distance
function is used to calculate the distance, obtaining the value of 12973.15 m. We observed that
the geodetic distance is greater than the Euclidean distance by 5.19 m.

# Calculate the geodesic distance between vertices A and P
st_geod_distance (pointsWGS84$geometry[1],
pointsWGS84$geometry[3], tolerance = 0, sparse = FALSE)

## Units: [m]
# [,1]
## [1,] 12973.15

s2_distance(pointsWGS84$geometry[1], pointsWGS84$geometry[3],
radius=s2_earth_radius_meters())

## [1] 13021.24

The vertices, in geographic and plane coordinate systems, are mapped comparatively by means
of the qtm and tmap_arrange functions of the R package tmap (Figure 12.11).

# Map the points in geographic and plane coordinates
wl <- qtm(pointsGeo, symbols.size = 0.1, symbols.col = "red",
title ="Plane Projection")+ tm_grid(col = "gray70") +
tm_xlab("Longitude") + tm_ylab("Latitude")
w2 <- qtm(pointsWGS84,symbols.size = 0.1, symbols.col = "red",
title ="Geographic Projection")+tm_grid(col = "gray70") +
tm_xlab("Longitude") + tm_ylab("Latitude'")
current.mode <- tmap_mode("plot")
tmap_arrange(wl, w2, widths = c(1, 1))

12.14.7 Calculating geodesic area of polygon

The vector data of irradiation vertices used in a topographical survey, with the calculation of
coordinates by the walking method of a closed-path polygon of a building at the Federal University
of Mato Grosso, are imported from the Internet.
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FIGURE 12.11: Comparative mapping of attribute points defined by the intersection method
in the plane and geographic projections.

## # download training areas

## download. file(url=

## "http://www.sergeo.deg.ufla.br/geomatica/downloads/spdfIrr.zip",
## destfile = "spdfIrr.zip")

The files have been unzipped by the unzip function.

## unzip(zipfile = "spdfIrr.zip'")

Data are imported into the directory by the getwd function.

## getwd()

The file is imported into R with the st_read function from the sf package and named “areaPol”.

areaPol <- st_read("files/spdfIrr.shp")

## Reading layer ‘spdfIrr' from data source

## "C:\bookdown\surveying-with-geomatics-and-r_R1_03102021\files\spdfIrr.shp'
##  using driver 'ESRI Shapefile'

## Simple feature collection with 1 feature and 1 field

## Geometry type: POLYGON

## Dimension: XY

## Bounding box: xmin: 600093.6 ymin: 8273776 xmax: 600112.2 ymax: 8273801

## Projected CRS: WGS 84 / UTM zone 21S
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The polygon area calculation based on Euclidean distances that defined the surveyed perimeter
is determined using the st_area function. The polygon area is 235.323 m?.

st_area(areaPol)

## 235.323 [m"2]

The polygon, initially in plane UTM 21S projection, is transformed to WGS-84 geographic pro-
jection to calculate the polygon geodetic area.

areaGeo <- st_transform(areaPol, 4326) #Reproject to WGS-84

The polygon geodetic area is calculated using the function st_geod_area. There is a difference
between the calculated geodetic area and the area based on Euclidean distance, of the order of
0.1300 m?.

st_geod_area(areaGeo) # Calculate geodetic area

## 235.4532 [m"2]

The spherical area of the polygon of the building calculated by the s2_area function presented a
difference between the geodetic area and the area based on Euclidean distance being 0.9581 m?.

s2_area(areaGeo)

## [1] 236.2811

12.14.8 Calculate the geodesic area of Brazil

The polygon of Brazil is obtained from the world map, from the R package spbata to calculate the
geodetic area of Brazil comparatively, in the ellipsoids SIRGAS-2000, SAD-69, Chua and Cérrego
Alegre 1961. The world map with the country boundaries in each continent is mapped with the
plot function (Figure 12.12).

plot(world["continent"], key.pos=1)

A subset of South America is conducted, to assess Brazil and the context of its neighborhood.

world_america <- world[world$continent == "South America",]

Maps are made of all data columns available in the archive and of the South American countries
in isolation, with the plot function (Figure 12.13).
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Alnca AN Ama Europe Morth Amenca Ocearsa  Seven Seas (open ocean)

FIGURE 12.12: Mapping continents from cadastral map of countries in the world.

plot(world_america, max.plot = 10) # Mapping attributes
plot(world_americal[''name_long"], key.pos=1, axes=T) # Mapping countries

Then a subset is made for Brazil with the [] operator.

BrazilWGS84 <- world[world$name_long == "Brazil",]

The Brazil polygon has been exported with the st_write function for later use.

## st_write(BrazilWGS84, dsn=
#t "E:/Aulas/Topografia/Aulall/BrazilWGS84.shp",
#t layer = "BrazilWGS84.shp", driver = "ESRI Shapefile")

The subset of Brazil is mapped against all available data in the archive and also of Brazil with
other South American countries, using the plot function (Figure 12.14).

plot(BrazilWGS84, max.plot = 10) # Mapping Brazil's attributes

plot(st_geometry(BrazilWGS84), expandBB = c(0.2, 0.2, 0.1, 1),
col = "gray", lwd = 3, axes=T) # Mapping Brazil's geometry

plot(world_americal[0], add = TRUE) # Mapping all countries

The Brazil polygon is transformed into different Brazilian geographic projection reference systems
in order to perform geodetic area determination comparisons. The st_transform function is used
for the different coordinate EPSG codes.
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FIGURE 12.13: Attribute mapping of South American countries.

BrazilSIRGAS<-st_transform(BrazilWGS84, 4674) # WGS-84 in SIRGAS-2000
BrazilSAD69<-st_transform(BrazilWGS84, 4618) # WGS-84 in SAD-69
BrazilChua<-st_transform(BrazilWGS84, 4224) # WGS-84 in Chua
BrazilCA<-st_transform(BrazilWGS84, 5524) # WGS-84 in Corrego Alegre-1961

The geodetic area of Brazil is calculated in square meters and square kilometers using the
set_units function from the units package. The geodetic areas of Brazil in the SIRGAS-2000,
SAD-69, Chud, and Coérrego Alegre-1961 geographic projections are 8508557, 8508525, 8509011,
and 8509009 km?, respectively. The largest area of Brazil is obtained in the Chud projection,
followed by Cérrego Alegre-1961, SIRGAS-2000 and SAD-69.
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FIGURE 12.14: Mapping Brazil in relation to its South American neighbors.

# Calculate geodetic area for SIRGAS-2000
st_geod_area(BrazilSIRGAS)

## 8.508557e+12 [m"2]

st_geod_area(BrazilSIRGAS) /1000000

## 8508557 [m"2]
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units::set_units(st_area(BrazilSIRGAS), kmA2)

## 8540954 [km"2]

# Calculate geodetic area for SAD-69
st_geod_area(BrazilSAD69)

## 8.508525e+12 [m"2]

st_geod_area(BrazilSAD69) /1000000

## 8508525 [m"2]

units::set_units(st_area(BrazilSAD69), km"2)

## 8540861 [km"2]

# Calculate geodetic area for Chud
st_geod_area(BrazilChua)

## 8.509011le+12 [m"2]

st_geod_area(BrazilChua) /1000000

## 8509011 [m"2]

units::set_units(st_area(BrazilChua), km"2)

## 8540956 [km"2]

12 Coordinate Reference Systems for Geodetic

# Calculate geodetic area for Cérrego Alegre-1961

st_geod_area(BrazilCA)

## 8.509009e+12 [m72]
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st_geod_area(BrazilCA) /1000000

## 8509009 [m"2]

units::set_units(st_area(BrazilCA), km*2)

## 8540954 [km"2]

The subset of Brazil, on the different transformed ellipsoids, is mapped by the qtm and
tmap_arrange functions from the R package tmap (Figure 12.15).

## pl <- qtm(BrazilSIRGAS, title="SIRGAS")+ tm_grid(col = "gray70") +
## tm_xlab("Longitude") + tm_ylab("Latitude") # SIRGAS-2000

## p2 <- gqtm(BrazilSAD69, title="SAD69") + tm_grid(col = "gray70") +

##t tm_xlab("Longitude")+ tm_ylab("Latitude") # SAD-69

## p3 <- gtm(BrazilChua, title="Chud")+ tm_grid(col = "gray70") +

## tm_xlab("Longitude")+ tm_ylab("Latitude") # Chua

## p4 <- gtm(BrazilCA, title="Corr.Aleg.")+ tm_grid(col = "gray70") +
## tm_xlab("Longitude")+ tm_ylab("Latitude") # Corrego Alegre-1961
## current.mode <- tmap_mode("plot")

## tmap_arrange(pl, p2, p3, p4, widths = c(1, 1))
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FIGURE 12.15: Mapping Brazil in the SIRGAS-2000, SAD-69, Chua, and Coérrego Alegre
coordinate systems.
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12.14.9 Transforming the geographic projection of raster data
In the raster data projection transformation, data are obtained from a SRTM topographic radar
mission used to determine the altitude of Lavras, state of Minas Gerais, Brazil. The getData

function is used to obtain the vectors of Brazilian municipalities, to subsequently make a subset
in the region of interest.

brazilRegions3 <- getData('GADM', country='BRA', level=3)

The Brazilian districts are mapped in order to visualize the spatial distribution of vectors in the
region of interest (Figure 12.16).

plot(brazilRegions3, axes=T, asp=1)
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FIGURE 12.16: Mapping political boundaries of Brazilian municipalities obtained with the
getData function.

A subset of the vectors at the boundary boundaries defining the city of Lavras is performed in
order to generate a subset of the raster data in that region.

lavras<-subset(brazilRegions3, NAME_2=="Lavras")

Then, Lavras city is mapped with the plot function (Figure 12.17).

plot(lavras, axes=T, col='""grey92")
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FIGURE 12.17: Mapping of Lavras city, Minas Gerais, Brazil, obtained from a subset of Brazil-
ian municipalities.

The vectors of Lavras city are converted into sf class files to export the file defined as the region
of interest in Brazil using st_as_sf function.

##

## lavras_sf<-st_as_sf(lavras)

The vectors for the district of Lavras are exported in ESRI Shapefile format with the st_write
function.

## st_write(lavras_sf, dsn = "E:/Aulas/Topografia/Aulall/lavras_sf.shp",
# layer = "lavras_sf.shp'", driver = "ESRI Shapefile")

The getData function is used to obtain the digital elevation model of the area. Due to the ge-
ographical area position, it is necessary to obtain files referring to longitudes -45 and -46 and
latitude -21.

## demLavrasl <- getData('SRTM', lon=-46, lat=-21, download=TRUE)
## demLavras2 <- getData('SRTM', lon=-45, lat=-21, download=TRUE)

Image mosaicking is performed using pixel averaging in regions with overlapping image data.

## demLavras<-mosaic(demLavrasl, demlLavras2, fun=mean)
## demLavras



312 12 Coordinate Reference Systems for Geodetic

We cropped and masked the image mosaic from the Lavras vectors with the crop and mask
functions, respectively.

## demLavras_clip <- crop(demLavras, lavras) # Crop
## demLavras_mask=mask(demLavras_clip, lavras) # Mask

The digital elevation model mask is mapped within the Lavras boundaries with the plot function
(Figure 12.18).

## plot(demLavras_mask, col=grey((0:48)/48))
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FIGURE 12.18: SRTM altitude mapping in Lavras, Minas Gerais, Brazil.

The map projection of the digital elevation model at Lavras is evaluated with the crs function.

## crs(demLavras_mask)

After, the projectRaster function is used to perform the transformation of the geographic pro-
jection of the digital elevation model from WGS-84 to SIRGAS-2000.

## demLavrasSirgas <- projectRaster(demLavras_mask, crs=
## "+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs")

We can use parameters of the +proj function to set a value of crs to assign a map projection to
the raster when it does not exist.
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## crs(demLavrasSirgas) <-
## "+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs"

Finally, the digital elevation model is exported for further use by means of the writeRaster
function.

## writeRaster (demlLavras_mask,

## filename="E:/Aulas/Topografia/Aulall/demLavras_mask.tif",
## overwrite=TRUE)
I

12.15 Solved Exercises
12.15.1 Determine the first eccentricity of the GRS-80 ellipsoid.

A: The parameters given in Table 12.1 are used to determine the first eccentricity of the GRS-80
ellipsoid. The first eccentricity of the GRS-80 ellipsoid is 0.08181919.

# Data

f<- 1/298.257222101

# Calculate the first eccentricity
e<-sqrt((2xf)-(fr2))

e

## [1] 0.08181919

12.15.2 Considering the reference ellipsoid in the SIRGAS-2000 geodetic sys-
tem, determine the minor semi-axis to 6 decimal places and the second
eccentricity.

A: The minor semi-axis is 6356752.314140 m. The second eccentricity is 0.08209444.

# Data

f<- 1/298.257222101

a<-6378137.0

# Calculate minor semi-axis

b<-(1-f)*a

# Calculate minor semi-axis with 6 decimal places
b6<-format(b, nsmall=6)

b6

## [1] "6356752.314140"
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# Calculate the second eccentricity
ex<-sqrt(atr2-b”r2) /b

12.15.3 Determine the radius of the meridian and prime vertical of a point
of latitude 41°1815.0132" N, using parameters from the GRS-80 ellip-
soid. What is the radius of the great circle located at an azimuth of
142°14’36" from the point? Present the results to 6 decimal places.

A: The radius of the meridian is 6363257.346179 m; the radius of the prime vertical is
6387458.536282 m; the radius of the great circle is 6372309.400720 m.

library(circular) # Enable circular Package

# Calculate e”2 for GRS-80

e2<-eN2

# Data

a<-6378137.0
phi<-41+18/60+15.0132/3600
alpha<-142+14/60+36/3600

# Calculate RM
RM<-(ax(1-e2))/(1-(e2x(sin(rad(phi)))r2))*(3/2)
# Present RM with 6 decimal places
RM6<- format(RM, nsmall=6)

RM6

## [1] "6363257.346179"

# Calculate RN
RN<-a/sqrt(1-(e2x(sin(rad(phi)))*2))
# Present RN with 6 decimal places
RN6<- format (RN, nsmall=6)

RN6

## [1] "6387458.536282"

# Calculate Ra

Ra<-(RN*RM) / ((RN* (cos(rad(alpha)))”2)+(RM*(sin(rad(alpha)))”2))
Ra6<-format(Ra, nsmall=6)

Ra6

## [1] "6372309.400720"
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12.15.4 Determine the radius of the meridian, the prime vertical, and the
mean radius of a point with latitude —22°0017.8160" in the SIRGAS-
2000 geodetic system. Present results with 6 decimal places.

A: The radius of the meridian is 6344159.215385 m, the radius of the prime vertical is
6381061.877162 m, the average radius is 6362583.792135 m.

# Calculate e”2 for GRS-80

e2<-eN2

# Data

a<-6378137.0

phi<--22+17/60+0.8160/3600

# Calculate RM
RM<-(ax(1-e2))/(1-(e2x(sin(rad(phi)))"2))"(3/2)
# Present RM with 6 decimal places

RM6<- format(RM, nsmall=6)

RM6

## [1] "6344159.215385"

# Calculate RN
RN<-a/sqrt(1-(e2*(sin(rad(phi)))A"2))
# Present RN with 6 decimal places
RN6<- format (RN, nsmall=6)

RN6

## [1] "6381061.877162"

# Calculate RO

RO<-sqrt (RN*RM)
RO6<-format (RO, nsmall=6)
RO6

## [1] "6362583.792135"

12.15.5 Determine the Earth’s radius for the ellipsoid GRS-80 with 20 decimal
places.

A: The Earth’s radius is 6371000.78997413441538810730 m.

# Enter parameters of the ellipsoid
a<-6378137.000000000
b<-6356752.314140356

# Calculate the radius
r<-=((a*2)*b)"(1/3)

P
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## [1] 6371001

# Present the result with 20 decimal places
ri<-format(r, nsmall=20)
ri

## [1] "6371000.78997413441538810730"

12.15.6 Determine the tolerance of a second-order standard survey for mea-
suring elevations of two geodetic landmarks 25 km apart.

A: The elevation tolerance is +6.5 mm.

L<-25
T<-1.3*%(L"0.5)
T

## [1] 6.5

12.16 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Perform plane, geodetic and spherical area calculation of vector
attribute data of interest. Compare the results obtained.

12.17 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 12.5.
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TABLE 12.5: Slide shows and video presentations on geodesy and coordinate reference systems.

Guide Address for Access
1 Slides on coordinate reference systems in geodetic surveys?
2 How to define a geodetic datum?
3 Lecture on geodetic surveying*
4 Accurate geodetic datum development plans®
5 Determining geodetic landmarks®

12.18 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 12.6).

TABLE 12.6: Practical and research activitie used or adapted by students using geodesy and
coordinate reference systems.

Activity Description
1 In the content on coordinate reference systems, interest may arise in doing the
work based on examples of geodetic calculations presented
2 Determine the Euclidean and geodetic distance from the intersection survey
example performed by the teacher in the previous chapter. Compare the results
obtained
3 Determine the geodetic area of a polygon surveyed in the field. Compare the

results with the area obtained from plane measurements

12.19 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Coordinate Reference Systems for Geodetic Surveying with
Geomatics and R”, on a single A4 page in order to show the student’s abilities to summarize a
subject presenting key points considered of greater importance today.

2http://www.sergeo.deg.uf'La.br/geomat'ica/book/clz/presentat'ion.html#/
3https://youtu.be/kXTHaMY3cVk
4https://youtu.be/VeBRquSjZS
5https://youtu.be/w69xc7UlRao
6https://youtu.be/foUFqglelU
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Cartographic Coordinate Projection Systems

13.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

o What does cartographic representation mean?

o How to classify cartographic projections.

o What is the difference between spherical, plane and Universal Transverse Mercator cartographic
projections?

o How to obtain geospatial data with the R packages rnaturalearth and spData.

o How to assign, transform and map cartographic projections in R.

13.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

e Understand the concepts of cartographic representation, classification of cartographic projec-
tions and definition of spherical, plane and Universal Transverse Mercator projections.

¢ Obtain geospatial data with the rnaturalearth and spData R packages.

o Assign, transform and map cartographic projections with rgdal, units, tmap and raster R
packages.

13.3 Introduction

Cartography is defined as the science, technique, and art of representing the Earth’s surface. In
Brazil, the concept of cartography was introduced in 1839 by Visconde de Santarém, Manuel
Francisco de Barros and Sousa de Mesquita de Macedo Leitao, with the etymological significance
of mapping (IBGE, 1999).

The cartographic representation of information regarding the phenomena distributed on the
Earth’s surface is carried out in two phases (IBGE, 1999):

o In the first phase (Geodesy), points on the Earth’s surface is projected onto a previously selected
reference sphere or ellipsoid;
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o In the second phase (Mathematical Cartography), the reference sphere or ellipsoid is projected
onto a flat surface.

The plane representation of the Earth’s surface is a legacy attributed to Eratosthenes (280 BC
to 194 BC), Hipparchus (194 BC to 126 BC) and Marino (1st century BC). More details on the
history of mathematical cartography can be found at Casaca et al. (2007).

Eratosthenes was the first to calculate the dimensions of the Earth 200 years BC. Eratosthenes
concluded that the Egyptian cities of Alexandria and Syene are located approximately on the
same meridian. He also observed that on the summer solstice, the sun is directly over Syene.
Thus, at that time, the sun, Syene and Alexandria are on the same meridian plane. Measuring
the length of the arc between the two cities and the subtended angle at the center of the Earth,
it would be possible to calculate the Earth’s circumference. The angle between the two cities and
the center of the Earth was determined by the length of the shadow of a vertical rod of known
length in Alexandria (Figure 13.1) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

S Sun light
S (considered parallel)

et

FIGURE 13.1: Procedure used by Eratosthenes to determine the Earth’s circumference.

Through this procedure, Eratosthenes applied the following equation to determine the circumfer-
ence of a circle (C') (Ghilani and Wolf, 1989; Slocum et al., 2014; Alves and Silva, 2016):

C = 360°2 (13.1)
(0%

where S is the distance between two locations on the Earth’s surface and, «, the angle that
separated the two locations that defined latitude.

The « angle obtained by measuring a shadow in Alexandria was 7° 12”. The distance determination
was based on the number of days traveling by camel between the two cities in ~810 km. Replacing
these values in the equation, the Earth’s estimated circumference was 40500 km.
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810
7012

C = 360° = 40500 km (13.2)

This calculation performed in R is as follows:

C<-360%(810/(7+12/60))
€

## [1] 40500

The Earth’s circumference result is similar to the current measurements of 40075 km (Alves and
Silva, 2016).

Fundamental contributions to modern mathematical cartography were made by Johann Heinrich
Lambert, Carl Friedrich Gauss and Auguste Tissot. Lambert in 1772 presented and described
seven cartographic projections including Mercator cross-sectional projection, conformal conic pro-
jection and azimuthal equal-area projection. Gauss (1827) contributed with differential geometry
to analyze cartographic projections. Tissot (1860, 1881) developed the theory of cartographic
deformation (Casaca et al., 2007).

Most surveys in small areas adopted the hypothesis of flat terrain surface. However, when the
survey area is large, it becomes necessary to consider the Earth’s curvature. The calculations
used to determine geodetic positions from survey observations with distance and azimuth data
can be laborious, so practical surveyors may not be familiar with these procedures. A system for
specifying positions of geodetic stations using plane coordinates has been desirable, provided that
calculations are performed using simple coordinate geometry equations (Ghilani and Wolf, 1989;
Alves and Silva, 2016).

In a plane coordinate system, a common reference datum is used for horizontal control over large
areas, just as in the geoid, with single reference point for vertical control. This procedure elimi-
nates individual surveys based on different reference coordinates not related to other coordinate
systems. Plane coordinate systems are available for all control points in a national reference space
system and for other existing control points. These systems are widely used as reference points
to initiate surveys of different types, such as road construction projects, border demarcation and
photogrammetric mapping. The use of plane coordinates enables to initiate projects for high-speed
highways starting at a control station close to another station with the same used coordinate sys-
tem. In boundary surveys, if the ends of a reference plot are in a plane coordinate system, the
locations of the points can be easily found. The positions of monuments, iron poles and other
types of marks may disappear, but the original locations could be recovered based on surveys
nearby landmarks using a plane coordinate system. For this reason, the plane coordinate system
is recommended when making new territorial subdivisions or as a reference system for data entry
in geographic information systems registration and spatial analysis (Ghilani and Wolf, 1989; Alves
and Silva, 2016).

13.4 Cartographic Representation

The cartographic representation can be represented by trace or image. The trace representation
is divided into globe, map, chart and plant (IBGE, 1999). Globe refers to a cartographic represen-
tation of natural and artificial aspects in a planetary figure, for cultural and illustrative purposes,
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on spherical surfaces and small scale. Map is defined as the representation of the geographical,
natural, cultural and artificial aspects of an area obtained from the surface of a planetary figure,
delimited by physical, political and administrative elements, intended for thematic, cultural and
illustrative use, on the plane, usually with small scale. Chart is defined as the representation of
the artificial and natural aspects of an area in a planetary surface, subdivided into sheets, delim-
ited by conventional, parallel and meridian lines, with scale compatible precision, on a medium
or large scale. Plan is a particular case of a chart that represents an area of restricted extension,
with constant scale and in which the Earth’s curvature is not considered.

The image representation is divided into mosaic, photochart, orthophotochart, orthophotomap,
photo index and image chart. The mosaic refers to a set of photos from a certain area, organized
in such a way that the whole set comprised a single photograph. Photochart refers to a controlled
mosaic on which a cartographic treatment was carried out. Orthophotochart refers to a photo-
graph resulting from the transformation of an original photo as a terrain central perspective, in
orthogonal projection on a plane, georeferenced, complemented by symbols and planimetric in-
formation. Orthophotomap refers to a set of several adjacent orthophotocharts in a given region.
Photo index refers to a set of overlapped photographs, usually on a small scale, used for quality
control of aerial surveys and to produce charts using photogrammetric methods. In this case, the
scale is normally reduced 3 to 4 times in relation to the flight scale. Image chart refers to a ref-
erenced image based on identifiable points with known coordinates, projection grids, symbology
and toponymy.

13.5 Cartographic Projection Classification

The basic problem with cartographic projections has been to represent a curved surface in a plane.
The ideal would be to build a chart with all the properties of representing the surface strictly
similar to the Earth. This chart should (IBGE, 1999):

e Maintain the true shape of the areas (conformal);
e Not change the areas (equivalente);
¢ Maintain constant relationships between the distances from the represented points (equidistant).

As the Earth’s surface is not plane, it was not possible to build a chart with all the desired
conditions for all situations.

Cartographic representations comprise the following steps (IBGE, 1999):

¢ Adopt a simplified mathematical model of the Earth’s surface, in general the sphere or ellipsoid
of revolution;

¢ Design all the elements of the Earth’s surface on the chosen model,;

o Relate the points of the mathematical model with the plane representation, with a scale and
coordinate system.

In mathematical cartography, the applications of the sphere and the ellipsoid in a plane and
the resulting deformations are studied and classified. The relative positioning of an object on the
surface (sphere or reference ellipsoid) and on the image surface (cartographic plane) is defined by a
point preferably located in the center of the region to be represented, designated by a central point.
The meridian and the parallel of the central point are called “meridian” and “central parallel”. The
cartographic projection must be bijective, that is, the images of the continuous lines on the object
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surface must be equally continuous in the cartographic plane. The cartographic abscissas (X) are
designated by distances to the meridian, symbolized by M and counted on the perpendicular. The
cartographic ordinates (V) are called “perpendicular distances”, symbolized by P and counted
over the meridian. In Anglo-Saxon countries, the designations corresponding to the abscissa and
ordinate are Easting and Northing, symbolized by E and N, respectively (Casaca et al., 2007).

When the origin of the coordinates of the cartographic projection is subjected into a translation,
in order to place the region in the first quadrant to avoid negative coordinates or to minimize
differences to an older coordinate system, the new coordinates should not be symbolized by M
and P, avoiding confusion with the distances to the meridian and the perpendicular. This same
situation, in the Anglo-Saxon countries, determined modification of the new coordinates E, N, by
the terms of False-Easting and False-Northing (Casaca et al., 2007).

The following parameters must be specified for a cartographic projection to be operational (Casaca
et al., 2007):

o Geodesic datum;

o Central point;

Scale factor;

e A new origin for cartographic coordinates.

The set formed by the projection and the parameters is called the “cartographic projection system”
(Casaca et al., 2007).

Cartographic projections are classified by different methodologies in order to determine a better
fit of the represented surface (IBGE, 1999; Fitz, 2008).

13.5.1 Classification by methods

Cartographic projections are classified according to the following methods:

o Geometric: The projection is based on a plane according to a point of view, based on the
intersection on the projection surface of the straight beam that passes through points of the
reference surface starting from a perspective center;

o Analytical: Mathematical formulations are used to calculate the projections.

13.5.2 Classification by deformations

Considering the impossibility of developing a spherical or ellipsoid surface on a plane without de-
formations, in practice, projections are used to reduce or eliminate part of deformations according
to different applications, as the following properties (Fitz, 2008):

e Conformal or similar projections: The true shape of the represented areas is maintained by not
deforming the angles on the map;

o Equidistant projections: There is constant variation in the represented distance, without linear
deformations;

o Equivalent projections: There is constant variation in the relative dimensions of the represented
areas;

o Azimuthal projections: The directions and azimuths of all lines coming from the central point
of the projection were the same as the corresponded lines in the terrestrial sphere;

o Arbitrary projections: Areas, angles, distances or azimuths are not preserved in the projections.
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13.5.3 Classification by point of view

The cartographic projections are classified in terms of the following points of view (Alves and
Silva, 2016):

e Gnomic or central: The point of view is located in the center of the ellipsoid;
o Stereographic: The point of view is located at the opposite end of the projection surface;
e Orthographic: The point of view is infinite.

13.5.4 Classification by type of projection surface

Cartographic projections are classified according to the following types of projection surfaces
(Alves and Silva, 2016):

o Plane: The projection surface is a plane;

o Conical: The projection surface is a cone;

o Cylindrical: The projection surface is a cylinder;

¢ Polyhedral: Several projection planes are brought together to form a polyhedron.

13.5.5 Classification by position of the projection surface

Cartographic projections are classified according to the following positions of the projection sur-
faces (Alves and Silva, 2016):

o Equatorial: The center of the projection surface is located on the Earth’s Equator;

e Polar: The center of the projection plane is a pole;

o Transverse: The axis of the projection surface is perpendicular to the axis of the Earth’s rotation;

o Oblique: Part of the Earth’s surface is projected onto a plane tangential to it between the poles
and the Equator.

13.5.6 Classification by situation of projection surface

Cartographic projections are classified according to the following situations of the projection
surfaces (Alves and Silva, 2016):

o Tangent: The projection surface touches the ellipsoid at a point (plane) or in a line (cylinder or
cone);

o Secant: The projection surface cuts the ellipsoid in two points (plane) or in two lines (cylinder
or cone) of secancy.

13.6 Spherical Cartographic Projections

Spherical cartographic projections are used on small-scale geographic maps. In this case, a ref-
erence sphere is applied to the cartographic plane. The charts and larger topographic plans are
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based on ellipsoidal projections, that is, a reference ellipsoid is applied in the cartographic plane
(Casaca et al., 2007).

The sphere is an adequate representation of the Earth for many applications that do not require
the greatest precision. The first approximation made to the shape and size of the Earth was a
sphere with a radius of 6371 km. The 3D spherical coordinates of longitude (1)), latitude (¢) and
altitude (h) are defined in the sphere. The shortest route between two points on the sphere is
called the “great circle”. The great circle is defined by the intersection plane that passed through
both points and the center of the sphere (Figure 13.2) (Iliffe and Lott, 2008).

Pole Greenwich

Equator D

Equatorial
plane view

FIGURE 13.2: 3D spherical coordinates of longitude, latitude and altitude.

Considering the coordinates of two points A and B, (¢4 — A4) and (¢ — Ap), respectively, the
distance L 45 between two points is (Iliffe and Lott, 2008):

cosL g = sing 4sing g + cosg 4cosp gcosAX (13.3)

where A\ means the difference in longitude between the two points (Iliffe and Lott, 2008):
AXN=Ag— Ay (13.4)

With that, the response in angular unit can be converted into distance using the angle in radians
and multiplying by an appropriate value of the Earth’s spherical radius (Iliffe and Lott, 2008):

™
L) = 6371 L (13.5)

180 (degrees)
The azimuth AB is defined by the hour angle between the meridian at A and the large circle up
to B (Iliffe and Lott, 2008):

cosp stang g — sing ,cosAN

13.
sinAM (13.6)

cot g =

In conjunction with the coordinate system A, ¢ and h, the following terms are defined (Iliffe and
Lott, 2008):

o Parallels of latitude: Lines of equal latitude on the sphere surface;
o Meridians: Lines of equal length on the sphere surface.



326 18 Cartographic Coordinate Projection Systems

13.7 Plane Cartographic Projections

The conversion of positions on the Earth’s surface to plane rectangular coordinates could be
accomplished by projecting the points mathematically from the ellipsoid to a developed imaginary
surface. A surface can theoretically be developed without distortion of shape or size. A rectangular
grid can be superimposed on the developed plane surface so that the positions of points on the
plane were specified in reference to the grid’s X and Y axes. A plane grid can be developed using
a mathematical process called “map projection”.

All map projections must contain at least two mathematical equations: one defining the X value
and the other, the Y value. A simple projection involving the two equations is (Slocum et al.,
2014; Alves and Silva, 2016):

X =R\ —\y) (13.7)

Y = R¢ (13.8)

where A is the longitude value, ¢, the latitude, Ay, the value of the central meridian and, R, the
radius of the reference globe.

To calculate the X and Y values based on these equations, the longitude value of the central
meridian must be obtained. If the longitude value is 0°, the central meridian value will coincide
with the first meridian. All latitude and longitude values must be converted to radians. This
conversion is necessary to perform geocomputation (Alves and Silva, 2016).

Through the sf, rnaturalearth and tmap packages it is possible to determine and map different
projections of country boundaries on Earth.

library(sf)
library(rnaturalearth)
library(tmap)

The Earth’s spatial polygons with attributes is obtained on a small scale from the rnaturalearth
package, in WGS-84 geographic projection, and converted to sf for later calculation of different
plane cartographic projections.

Earth <- countriesl1l0 %>%
st_as_sf() %>%
st_geometry ()

The Plate Carrée projection is one of the oldest projections developed by the Greeks. We observed
that in the longitude and latitude lines of the Plate Carrée projection there is spacing at equal
intervals. The longitude lines presented equal sizes, but with no convergence at the poles, as it
should be under conditions of an ideal projection (Slocum et al., 2014; Alves and Silva, 2016). As
an example, the Earth is re-projected and mapped in the Plate Carrée (Equidistant Cylindrical)
projection in R using qtm function and +proj=eqc (Figure 13.3).
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qtm(Earth, projection = "+proj=eqc")+tm_grid()

FIGURE 13.3: Mapping Earth’s continents in the Plate Carrée projection.

Just by adding trigonometric functions, it is possible to expand the map based on simple equations.
For example, with the addition of cosine in longitude, the equation can be modified by (Slocum
et al., 2014; Alves and Silva, 2016):

X = R(A— X\y)cosd (13.9)

Y = R¢ (13.10)

Lambert’s cylindrical projection of equal area, developed in 1772 by Johann H. Lambert, is deter-
mined with this mathematical transformation. In this projection, the meridians are equally spaced
in a similar way to the Plate Carrée projection, but the spacing between the parallels decreased
with increasing distance from the Equator. The Equal Area Cylindrical projection can be mapped
with gtm function and +proj=cea (Figure 13.4).

qtm(Earth, projection = "+proj=cea")+tm_grid()

An alternative can be realized by introducing a sine function in simple equations, changing the
way of determining latitude (Slocum et al., 2014; Alves and Silva, 2016):

X =RA—\) (13.11)

Y = Rsing (13.12)

The change in latitude results in the sinusoidal pseudocylindrical projection. In this case, the lines
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FIGURE 13.4: Mapping Earth’s continents in the Equal Area Cylindrical projection.

of latitude are parallel and equally spaced. However, the meridians are curved converging towards
the north and south poles, but the spacing between the parallels decreased with increasing distance
from the Equator. The sinusoidal projection can be mapped with qtm function and +proj=sinu
(Figure 13.5).

qtm(Earth, projection = "+proj=sinu")+tm_grid()

.....

FIGURE 13.5: Mapping Earth’s continents in the sinusoidal projection.
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With the combination of sine and cosine functions in simple equations, the polycylindrical or
Mollweide projection is obtained (Slocum et al., 2014; Alves and Silva, 2016):

X = R(A— X\y)coso (13.13)
Y = Rsing (13.14)

The meridians are curved as in the sinusoidal projection, and the parallels are similar to the other
two cylindrical projections presented. The Mollweide projection can be mapped with qtm function
and +proj=moll (Figure 13.6).

qtm(Earth, projection = "+proj=moll")+tm_grid()

FIGURE 13.6: Mapping Earth’s continents in the Mollweide projection.

Projection parameters can be modified using CRS definitions (Lovelace et al., 2019b). For example,
modifying the center of the Azimuth Lambert projection from an area equal to longitude and
latitude 0, 0 to longitude -50, -17, the map is centered in Lavras, Minas Gerais, Brazil (Figure
13.7).

gtm(Earth,projection="+proj=laea +x_0=0 +y_0=0 +lon_0=-44.9998 +lat_0=-21.2457")
+tm_grid()

The projection concepts described previously applied equally to data with raster geometry. How-
ever, important differences in the re-projection of vectors and rasters are (Lovelace et al., 2019b):

¢ In the geometric transformation of a vector object, the coordinates of each vertex have changed;
o Rasters are composed of rectangular cells of the same sizes and it is not possible to transform
pixel coordinates separately;
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FIGURE 13.7: Modification of the Azimuth Lambert projection center for longitude and latitude
coordinates in Lavras, Minas Gerais, Brazil.

o In raster re-projection, a new raster object is created, usually with a number of columns and
rows different from the original,

o In the raster re-projection, the attributes must be subsequently re-estimated, so that new pixels
can be filled with other values.

In the re-projection of raster data, two separate spatial operations are considered (Lovelace et al.,
2019b):

e Vectorial re-projection of centroid pixels to another CRS;
o (Calculation of new pixel values by re-sampling.

13.8 State Plane Coordinate System

The United States has adopted its own specialized coordinate systems for applications such as
surveying that require very high accuracy (Longley et al., 2001). The State Plane Coordinate
System (SPCS) is a system of large-scale conformal map projections originally created in the
1930s to support surveying, engineering, and mapping activities throughout the United States and
its territories. The system was revised in 1983 to accommodate the shift to new North American
Datum (NAD-83) with the GRS-80 ellipsoid parameters (Longley et al., 2001; NOAA, 2020b).
The R packages USAboundaries and USAboundariesData include contemporary state, county, and
Congressional district boundaries, as well as zip code tabulation area centroids for use in R. The
packages also include historical boundaries from 1629 to 2000 for states and counties from the
Newberry Library’s Atlas of Historical County Boundaries and historical city population data
from Erik Steiner’s United States Historical City Populations, 1790-2010. It is also possible to
acess helper data, including a table of state names, abbreviations, FIPS codes, functions and data
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to get SPCS projections as EPSG codes or proj4string (Mullen and Bratt, 2018). Geographical
vector boundaries of the United States can also be obtained with the maps R package (Brownrigg,
2018) and re-projected from WGS-84 datum to the US National Atlas Equal Area projection
(+proj=1aea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0 +a=6370997 +b=6370997 +units=m +no_defs)
and displayed using ggplot2. In this same plot, we included California state vector boundaries
transformed from WGS-84 datum to the NAD-83/California zone 3 SPCS projection with the
USAboundaries and sf packages (Figure 13.8).

US National Atlas Equal Area, EPSG:2163
US WGS-84, EPSG:4326
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FIGURE 13.8: Boundary lines of the states of the United States in WGS-84 and US National
Atlas Equal Area projection and the California state in WGS-84 and State Plane Coordinate
System projection.

Some large states decided that distortions are still too great and designed their SPCS with internal
zones. For example, Texas has five zones based on the Lambert conformal conic projection. Hawaii
has five zones based on the Transverse Mercator Projection. Many other countries have adopted
their own coordinate systems. The UK uses a single projection and coordinate system known as
the “National Grid”, based on Transverse Mercator Projection. Canada uses a uniform coordinate
system based on the Lambert Conformal Conic Projection (Longley et al., 2001).

13.9 Universal Transverse Mercator Projection

The Universal Transverse Mercator (UTM) projection is another Earth projection system used.
The UTM system became prominent in surveys after the inclusion of UTM coordinates as metric
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unit projection for different existing ellipsoids (datum). The UTM system was initially developed
by the US Department of Defense (DoD) for military use, with global coverage from 80° S latitude
to 84° N latitude. Each zone has longitudinal width of 6°. With this, 60 zones are needed to
represent the entire Earth (Figure 13.9) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Other characteristics of the UTM projection are (Silva and Segantine, 2015):

o Latitude of origin: 0° (Equator);

o Longitude of origin: The longitude of the central meridian of the fuse;

o False-Northing (North translation): 10000000 m for the Southern Hemisphere;

o False-Easting (East translation): 500000 m;

o Scale factor at the central meridian: k, = 0.9996;

o The Equator and the central meridian line of each fuse were represented by straight lines on the
projection and the other meridians and parallels by concave lines with respect to the central
meridian and nearest pole, respectively.

The central meridian of the UTM projection can be determined 6° by 6°, with the first central
meridian at longitude 177° and the last at longitude 3°. The relationship between the fuse and
central meridian can be obtained by (Silva and Segantine, 2015):

Fuse = M (13.15)

MC = 183° — (6Fuse) (13.16)

where M C' is the central meridian of the fuse.

The UTM fuses, excluding the polar ice caps, are projected on cylinders tangent to their central
meridian. The 60 UTM cartographic planes, with the images of fuses, are discontinuous at the
borders, so that the projection used is polysurface or interrupted. The UTM zones are numbered
from 1 to 60, starting at longitude 180° W. The central meridian of each zone assigned a Fals-
Easting offset value F, of 500000 m (Casaca et al., 2007). A False-Northing offset value of zero is
applied for each zone in the Northern Hemisphere and 10000000 m for the Southern Hemisphere,
in order to avoid negative Y coordinates. We must specify the zone number as well as the Northing
and Easting offset to specify any point in the UTM system (Ghilani and Wolf, 1989; Alves and
Silva, 2016) (Figure 13.10). In the UTM system, there is overlap of adjacent zones of 0°30” creating
an overlap area of 1° width. The overlap area made field work easier in certain activities. Evaluating
the scale deformation in a UTM fuse with a tangent, we verified a scale factor equal to one in
the central meridian and approximately equal to 1.0015 or (1/666), in the extremes of the fuse.
Assigning the k&, scale factor of 0.9996 to the central meridian of the UTM system transformed the
tangent cylinder into a secant cylinder, determining a more favorable scale deformation pattern
along the fuse. The scale error is limited to 1/2500, at the central meridian and, 1/1030 at the
fuse extremities (IBGE, 1999).

13.9.1 Transformation of geodetic coordinates into UTM coordinates

The transformation of geodetic coordinates into UTM coordinates is exemplified by means of
rigorous equations (IBGE, 1995; Silva and Segantine, 2015):

N’ = (I)+ (ID)p? + (I11)p* + (Ag)p° (13.17)

E'=(IV)p+(V)p® + (B;)p° (13.18)
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FIGURE 13.9: Fuse zones of the Universal Transverse Mercator system in South America, in a
spherical representation of the Earth in the Google Earth software.

where the ordinate N = N’ for the Northern Hemisphere, the ordinate N = 10000000 - N’ for the
Southern Hemisphere, the abscissa E = 500000 + E’ for points east of the central meridian, E =
500000 - E’ for points west of the central meridian.

(I) = koS (13.19)
B C D E F
S =a(l—e*)[Agp, — Esen2¢g + Zsen4¢g — Esen&ég + gsen&bg — E(ﬁg +...] (13.20)

3. 45 , 175 . 11025 . 43659
Am142e24 2Ppa 2006 8 10
T2 61 T 56 T 16334 T 65536°

(13.21)

3. 15, 525 . 2205 . 72765
B="° 2 4 6 ~ o8 _Z T el0 13.22
19T 16 T512° T 2048¢ T 65536°¢ (13.22)
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FIGURE 13.10: Coordinate determination (left) and UTM zone nomenclature (right).
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C=51° " 256° T 2006° " 16384 (13.23)
b= 53T5266 230145868 N 13311108752elo (13.24)
E= 12:13:468 + 635456356 e (13.25)

- 136190372610 (13.26)

where, for geomatics calculations, we can perform the calculation up to equation C', disregarding
equations D, F and F'.

B Nsenqbgcosq’)g(%)%olos

(I1) 5 (13.27)

(I11) = ((f}“)wsz%cos%g )(5— tan?¢, + 9e'2cos?p, + 4e’4 )k, 1016 (13.28)
(IV) = Ncos%(%)%olo‘l (13.29)

(V)= (M)(l —tan’¢, + e*cos®¢,)ky10? (13.30)

6
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p = 0.0001A\" (13.31)

(#)6N86n¢g6085¢

Ag = ( =0 761 — 58tan’¢, + tan'd, + 270e">cos’ ¢, — 330e?sen ¢, ) ky10*
(13.33)
(%)°Nseng,cos’ e,
By = -~ (5 —18tan?¢, + tan*¢, + 14e"*cos ¢, — 58" *sen’¢, ) k102 (13.34)

120

where p" is a conversion factor from radian to arc second equal to 206264.8062”, ¢, the geodetic
latitude of the point, A, the geodetic longitude of the point, Aj;c, the longitude of the central
meridian, kg, 0.9996, N, the radius of the first vertical and, e, €’, the first and second eccentricity,
respectively.

The angular difference between geodetic north (Ng) and grid north (Ng) is termed meridian
convergence (). The v is positive to the west and, negative to the east of the central meridian.
The «y can be determined by (Silva and Segantine, 2015):

v = (XID)p+ (XIII)p?+ (C5)p° (13.35)
where
(XIT) = seng,10* (13.36)

144 2
_ (F) seng,cos’¢,

(XIIT) ;

(14 3€ecos®¢, + 2¢"*cos’ )10 (13.37)

1) 4sene,cost o
C, = il 159 22— tan?¢,)10%° (13.38)

where e’? is the second quadratic eccentricity.

The 7 can be determined with an approximate value by (Silva and Segantine, 2015):

v = Alseng, (13.39)

13.9.2 Reduction of geodetic distance in plane distance

The reduction of a topographic distance to the reference ellipsoid can be obtained as a function
of the altimetric scale factor (k) (Silva and Segantine, 2015):

Hp

Row =15 370,

) (13.40)

where Hp is the orthometric altitude of the point and, R, the local mean radius of the Earth at
the latitude of the point.
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A scale factor (kyypr) application is necessary to obtain the plane distance in the UTM projection
(Figure 13.11) (Silva and Segantine, 2015):

dUTM = kUTMdO (13'41)

where d,, is the ellipsoidal distance.

d

Spherical distance

9]

Ellipsoidal distance

FIGURE 13.11: Geometric relations to calculate distance in the UTM projection.

A scale factor ky = 0.9996 is adopted for points on the central meridian in the UTM projection to
avoid exaggerated deformations at the fuse borders. The scale factor grew westward and eastward
from the central meridian, with value £ = 1.0, at E = 320000 m, E = 680000 m and, &k = 1.00097
at E = 166000 m and, E = 834000 m (Figure 13.12) (Silva and Segantine, 2015).

The value of the scale factor can be determined in simplified form by (Silva and Segantine, 2015):

E’?

o) (13.42)

kyrar = ko(1 +

where k; = 0.9996 at the central meridian, E’= E-500000 for points east of the central meridian,
E’= 500000 - E for points west of the central meridian and R,, is the local mean radius of the
Earth at the point considered.

The use of the full-scale factor (k) is recommended for plane distance calculation from measure-
ments with sighting instruments (Silva and Segantine, 2015):
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FIGURE 13.12: Scale factor of the UTM projection.

kp = kaltkUTM

(13.43)

The plane distance (d,) and the topographic horizontal distance (d) can be obtained by (Silva
and Segantine, 2015):

dyrav = kpd

d= dUTM
kT

(13.44)

(13.45)

The UTM system is completed in the polar regions with the UPS (Universal Polar Stereographic)
system. Regions located on the polar ice caps not covered by the UTM system can be projected by
the plane stereographic projection (ellipsoidal version) on planes tangent to the north and south
poles (Casaca et al., 2007; Alves and Silva, 2016).
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13.10 Cartographic Projections in Computers

Map projection calculations have been more difficult to perform on calculators than on computers
due to the length and magnitude of values used. Computer programs have been made available
to easily perform map projection calculations. The softwares usually accept point value input or
a file with the coordinate data to be transformed from one coordinate reference system (CRS)
into another.

13.11 Computation

The main groups of projection types in R are conical, cylindrical and plane. In conical projection,
the Earth’s surface is projected in a cone along a single tangent line or two tangent lines. Dis-
tortions are minimized along the tangency lines and increased with distance from the tangency
lines. This projection is most suitable for maps of mid-latitude areas. In cylindrical projection, the
surface of interest is mapped in a cylinder. This projection can also be created by touching the
Earth’s surface along a single tangency line or two tangency lines. Cylindrical projections have
been often used in mapping the Earth as a whole. In a plane projection, a plane surface touched
the globe at a point or along a line of tangency to project the data, with applications, for example,
in mapping polar regions (Lovelace et al., 2019b).

Projected coordinate reference systems are based on Cartesian coordinates on a plane surface. In
these systems there is an origin, X and Y axes, and a linear unit of measurement, such as meters.
All projected CRS are based on a geographic CRS (datum). Using map projections, 3D surface
of the Earth is converted into values for East and North (X and Y) on a projected CRS. This
transformation cannot be done without adding some distortion to the real surface. Some properties
of the Earth’s surface are distorted in this process, such as the area, direction, distance, and shape,
but a projected coordinate system enabled to preserve only one or two of these properties. The
projections are named based on the property preserved as equal area preserves area, azimuthal
preserves direction, equidistant preserves distance, and conformal preserves local shape (Lovelace
et al., 2019b).

The two main ways to describe CRS in R are either an EPSG code or a proj4string defini-
tion. By using an EPSG code, assigning a coordinate reference system can be more convenient,
easy to remember when compared to the proj4string function. However, through a definition of
proj4string there are more flexibility to specify different parameters about the coordinate system.
This enables to specify different projections and modify existing ones (Lovelace et al., 2019b).

As a computational practice, we aim to check map projection definitions in the sf package,
check available CRS codes, and check and assign a CRS to attribute vector type data. Obtain
vector data with boundaries of countries on Earth and Brazil. Mollweide, equidistant cylindrical
(equirectangular), Mercator and Robinson global projection transformations heve been mapped.
The boundaries of Brazil are mapped and country areas are calculated in square kilometers,
considering Lambert’s conformal conic map projections of South America, Albers equal area
projections of South America, Mercator and Equirectangular comparison results. Finally, map
projection transformations are performed on data with raster geometry in the UTM system.

The boundaries of attribute vector data of Earth countries and Brazil are obtained from the
packages spData (Bivand et al., 2020b) and rnaturalearth (South, 2021), respectively. Natural
Earth consists of a dataset of public domain maps available at scales 1:10, 1:50 and 1:110 million.
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Coordinate projection functions are used through the ProJ library of the rgdal package (Bivand
et al., 2021). The area calculation of Brazil is performed with the package sf (Pebesma et al.,
2021). The units package is used in the transformation of area units (Pebesma et al., 2020a).
The polygon maps of Earth countries and Brazil is mapped with the tmap package (Tennekes,
2018; Tennekes et al., 2020). The transformation of the geographic projection of a SRTM digital
elevation model of Lavras, Minas Gerais, Brazil (NASA, 2013) to the UTM projection is performed
with the raster package (Hijmans et al., 2020).

13.11.1 Installing R packages

The install.packages function is used to install the sf, rgdal, units, spData, tmap, raster and
rnaturalearth packages in the R console.

## install.packages("raster")

13.11.2 Enabling R packages

The library function is used to enable the sf, rgdal, units, spData, tmap, raster and rnatu-
ralearth packages in the R console.

library(sf)
library(rgdal)
library(units)
library(spData)
library(tmap)
library(raster)
library(rnaturalearth)

13.11.3 Checking map projection definitions available in sf

With the sf_proj_info function, the projections, ellipses, datums and data units from the PROJ
library are listed for a total of 162 projections.

13.11.4 Checking available CRS code

In the R package Spatial, a wide variety of CRS and the PROJ library are available. The EPSG
codes can be searched on the Internet or by using the make_EPSG function of the R package rgdal
totaling 6609 codes available.

13.11.5 Getting the CRS in sf

The function st_crs is used to obtain the CRS from a simple feature vector file with Earth country

attributes. The EPSG 4326, referring to the WGS-84 datum, is observed in the case of the file
“world”.
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13.11.6 Setting the CRS of a file

A CRS value can be assigned to a file if the coordinate system is lost or not recorded for some
reason. In this case, the st_set_crs function is used as an example to set the CRS to a file.
13.11.7 Mapping global projection transformations

Transformations of global projections Mollweide (moll), cylindrical equidistant or Plate Carrée
(eqc), Mercator (merc) and Robinson (robin) are performed on the “world” file, initially in WGS-
84 datum. The projections are transformed using the qtm function. The projection parameter is

set with the +proj function. The maps are arranged for mapping with the tmap_arrange function
(Figure 13.13).

## tmap_arrange (wl, w2, w3, w4, widths = c(1, 1))

moll

robin T
-, |

FIGURE 13.13: Mapping countries in the Mollweide (moll), Plate Carrée (eqc), Mercator (merc)
and Robinson (robin) map projections.

13.11.8 Mapping Brazil in different map projections

The vector boundary of Brazil is obtained by the rnaturalearth package to map Brazil in different
map projections.

brazil <- ne_countries(country = "Brazil")

Then the vector boundary is converted to sf for the subsequent mapping.
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brazil_sf <- st_as_sf(brazil)

Brazil is mapped in Lambert’s conformal conic for South America, Albers equal area for South
America, Mercator and equirectangular map projections for the Americas (Figure 13.14).

## title="aea")+tm_grid() # aea

e 2 ) aea

FIGURE 13.14: Mapping Brazil in the Lambert Conical Conformal projection for South Amer-
ica (Icc), Albers Equal Area projection for South America (aea), Mercator (merc) and Equirect-
angular projection (eqc) for the Americas.

13.11.9 Calculating area in different map projections

The area of Brazil in square kilometers is calculated in different map projections. The areas of
Brazil in Lambert’s conformal conic for South America, Albers Equal Area for South America,
Mercator and Equirectangular map projections are 8235020, 8508195, 9002220, and 8800636 km?,

respectively.

# Lambert's Conformal Conic of South America

al <- st_transform(brazil_sf, "+proj=lcc +lat_1=-5 +lat_2=-42 +lat_0=-32
+lon_0=-60 +x_0=0 +y_0=0 +ellps=aust_SA +units=m +no_defs")

st_area(al) /1000000

## 8235020 [m"2]
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units::set_units(st_area(al), km”2)

## 8235020 [km"2]

# Albers Equal Area of South America

a2 <- st_transform(brazil_sf, "+proj=aea +lat_1=-5 +lat_2=-42 +lat_0=-32
+lon_0=-60 +x_0=0 +y_0=0 +ellps=aust_SA +units=m +no_defs")

st_area(a2) /1000000

## 8508195 [m"2]

units::set_units(st_area(a2), km”2)

## 8508195 [km"2]

# Mercator
a3 <- st_transform(brazil_sf, "+proj=merc")
st_area(a3) /1000000

## 9002220 [m"2]

units::set_units(st_area(a3), km”2)

## 9002220 [km"2]

# Equirectangular
a4 <- st_transform(brazil_sf, "+proj=eqc")
st_area(a4) /1000000

## 8800636 [m"2]

units::set_units(st_area(a4), km”2)

## 8800636 [km"2]
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13.11.10 Performing map projection transformations on raster data

An SRTM digital elevation model of Lavras, Brazil, used in the previous chapter, is imported to
perform map projection transformations on raster data.

demLavras<-raster("files/demLavras_mask.tif")

The crs function is used to evaluate the projection of the SRTM model.

crs(demLavras)

## CRS arguments:
## +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

Another option for evaluating the raster projection is done with the projection function.

projection(demLavras)

## [1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

The SRTM model is re-projected for the WGS-84 datum in UTM 23 S projection with the
projectRaster function. For this, we configured the zone 23 South, where Lavras is located.

# Reproject raster

demLavrasUTM <- projectRaster(demLavras,
crs="+proj=utm +zone=23 +south +datum=WGS84
+units=m +no_defs+ellps=WGS84")

# Evaluating projection

demLavrasUTM

## class : RasterlLayer
## dimensions : 347, 389, 134983 (nrow, ncol, ncell)
## resolution : 86.5, 92.2 (x, y)

## extent : 480788.9, 514437.4, 7632947, 7664940 (xmin, xmax, ymin, ymax)

## crs : +proj=utm +zone=23 +south +datum=WGS84 +units=m +ellps=WGS84 +towgs84=0,0,0
## source . memory

## names : demLavras_mask

## values : 750.6041, 1274.197 (min, max)

To assign a map projection to the raster when necessary, we use the function crs and then set
the parameter +proj of the projection in which the data is transformed.

The pixels with altitude 800, 900, 1100 and 1200 m are mapped on the projected raster with the
rasterToContour function, followed by setting up the altitude contour lines.

Then, the SRTM elevation model is mapped with the 800, 900, 1100 and 1200 m altitude contour
values in a grey, white, black, grey90 and grey30 colors, respectively (Figure 13.15).
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TH40000  TE45000
L

TeI8000

FIGURE 13.15: Mapping the relief with contour lines, in Lavras city, Minas Gerais, Brazil.

13.12 Solved Exercises
13.12.1 Calculate the value of the central meridian for UTM zone 22.

A: The value of the central meridian for UTM 22 is -51° W or +51° W.

# Data

fuse<-22

# MC
MC<-183-(6xfuse)
MC

## [1] 51

13.12.2 In a topographic survey, the UTM coordinates of points A and B were
determined. Calculate the Euclidean distance between the points.

Required information: Coordinates at A: E = 471525 m; N = 6753374 m; coordinates at B: E =
475333 m; N = 6766955 m.
A: The Euclidean distance between points A and B is 14104.7660 m.

# Determine the distance
H<-sqrt((475333-471525)"2+(6766955-6753374)"2)
# Present the result with 4 decimal places
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H<-format(H, nsmall=4)
H

## [1] "14104.7660"

13.12.3 Determine the spherical distance in a straight line between the cities
of Arroio do Meio and Porto Alegre?

Required information: Coordinates in Arroio do Meio: A = 51°56'24" W; ¢ = 29°24” S and Porto
Alegre A = 51°13’48" W; ¢ = 30°01’48" S. Earth’s radius = 6378160 m.

A: The spherical distance is 98134.12 m.

# Enable package

library(circular)

# Data

R<-6378160

# Determine costheta

costheta<-(sin(rad(29+24/60)))*(sin(rad(30+1/60+48/3600)))+
(cos(rad(29+24/60)))*(cos(rad(30+1/60+48/3600)))*

(cos(rad((51+56/60+24/3600)-(51+13/60+48/3600))))

# Determine theta

theta<- deg(acos(costheta))

# Determine the distance

H<-theta* ((2*pi*R)/360)

H

## [1] 98134.12

13.12.4 Convert the geodesic coordinates of vertex A from the WGS-84 geode-
tic system to UTM.

Required information: ¢, = —22°45'33.4523" S; A\, = —47°12'56.2324" W.
A: The UTM E and N coordinates are 272499.2525 and 7481423.8370 m, respectively.

# Enable package

library(rgdal)

# Enter data

LongLat <- data.frame(X = c(-(47+12/60+56.2324/3600)),
Y = c¢(-(22+45/60+33.4523/3600) ) )

names (LongLat) <- c("X", "Y'")

# Convert to sp object

coordinates(LonglLat) <- ~ X + Y

# Add coordinate system

proj4string(LonglLat) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84'")

# Check input database in decimal degrees

LonglLat
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## class : SpatialPoints

## features HE

## extent : -47.21562, -47.21562, -22.75929, -22.75929 (xmin, xmax, ymin, ymax)
## crs : +tproj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0

# Project to UTM with the function spTransform

UTM <- spTransform(LonglLat, CRS("+proj=utm +zone=23 +south +ellps=WGS84
+datum=WGS84"))

# Present the results with 4 decimal places

X<-format (UTM$X, nsmall=4)

X

## [1] "272499.2525"

Y<-format (UTMSY, nsmall=4)
Y

## [1] "7481423.8370"

The exercise can also be done with the equations presented in the theoretical part of the text
about transformation of geodesic coordinates into UTM.

13.12.5 Determine the meridian convergence of point A in the SIRGAS-2000
geodetic system.

Required information: ¢, = —22°45'33.4523" S; A\, = —47°12'56.2324" W; k; = 0.9996.

A: The meridian convergence is determined in simplified form to the value of 0.8571359°.

# Enable package
library(circular)

# Data

fuse<-23
long<-(-(47+12/60+56.2324/3600))
lat<-(-(22+45/60+33.4523/3600))
# Determine the central meridian
MC<-183-(6*fuse)

# Determine the lambda delta
delta<-long-(-MC)

# Determine meridian convergence
gamma<-delta*sin(rad(lat))

gamma

## [1] 0.8571359
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13.12.6 The slant distance (L) between vertices A and B was measured with
a sighting instrument. Determine the plane distance between A and
B in the STRGAS-2000 geodetic system.

Required information: L 4 5 = 1724.928 m; vertical zenith angle = 87°27'31"; ¢, = —22°45"33.4523"
S; E = 272499.252 m; N = 7481423.837 m; H = 854.267 m; A, = 47°12/56.2324" W; local mean
radius of the Earth at point = Ry =6363127.455 m; scale factor at central meridian = ky = 0.9996.

A: The plane distance is 1723.4117 m.

# Enable package

library(circular)

# Data

LAB<-1724.928

z<-87+27/60+31/3600

RO<-6363127.455

H<-854.267

k0<-0.9996

E<-272499.252

E1<-E-500000

# Determine the horizontal distance between A and B
d<-LAB*(sin(rad(z)))

# Determine the altimetric scale factor (kalt)
kalt<-1-(H/(RO+H))

# Determine the UTM scale factor (kUTM)
KUTM<-kO* (1+(E1”2/ (2% (RO)A2)))

# Determine the toal scale factor (kT)
kT<-kaltxkUTM

# Determine the plane distance between A and B
dUTM<-KkT*d

# Present the results with 4 decimal places
dUTM4<-format (dUTM, nsmall=4)

duTM4

## [1] "1723.4117"

13.13 Homework

Choose one exercise presented by the teacher and solve the question with different input values.
Compare the results obtained. Perform a practice with a closed-path polygon traversing method
in the field. Determine X, Y coordinates of the vertices using the UTM projection. Transform the
UTM projection into another map projection. Calculate the area using both projections. Compare
the results obtained.



348 18 Cartographic Coordinate Projection Systems

13.14 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 13.1.

TABLE 13.1: Slide shows and video presentations on cartographic coordinate projection sys-

tems.
Guide Address for Access
1 Slides on cartographic projections and plane coordinate systems in geomatics'
2 Animation of map projections?
3 Lecture on map projections®
—

13.15 Research Suggestion

The development of scientific research on geomatics is stimulated through activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 13.2).

TABLE 13.2: Practical and research activities used or adapted by students using cartographic
coordinate projection systems.

Activity Description

1 Compare the representation of a region in different cartographic projections and
choose the best projection by weighing the advantages and disadvantages of the
projection adopted

2 Transform the coordinates of a closed polygon in different map projections.
Compare the area values obtained and justify the choice of the best result
3 Choose map projections to represent the world and South America. Justify the
choice

13.16 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “Cartographic Coordinate Projection Systems with Geomatics
and R”, on a single A4 page in order to show the student’s abilities to summarize a subject
presenting key points considered of greater importance today.

1http: //www.sergeo.deg.ufla.br/geomatica/book/cl13/presentation.html#/
2https ://youtu.be/gGumy-9HrsSY
3https ://youtu.be/v5fSBQRbPRO
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GNSS Surveying

14.1 Learning Questions

The emergent learning questions answered through reading the chapter are as follows:

e« What is the definition of global navigation satellite system?

o What is the difference between the Global Positioning System (GPS) and the Global Navigation
Satellite System (GNSS)?

o How to measure the GNSS signal.

e What is the difference between satellite reference coordinate systems, geocentric coordinate
systems, and geodetic coordinate systems?

o How to perform transformations between geocentric and geodetic coordinate systems.

e How to evaluate errors of GNSS survey observations.

o How to import, analyze and map GNSS kinematic surveying data in R software.

14.2 Learning Outcomes

The learning outcomes expected from reading the chapter are as follows:

¢ Understand the definition of global navigation satellite system and the difference between GPS
and GNSS.

o Understand definitions and basic characteristics of satellite reference coordinate systems, geo-
centric coordinate systems, and geodetic coordinate systems.

o Understand fundamentals of satellite positioning and observation errors.

¢ Import, analyze and map kinematic topographic survey data with GNSS in R software with the
sf, tmap and mapview R packages.

14.3 Introduction

The Global Navigation Satellite System emerged in the 1970s as a new approach to geodetic
surveying. This system was funded by the military to produce a global geographic guidance
and navigation system based on signals transmitted by satellites. With the success of the US
Satellite Positioning System (GPS), other countries also became interested in developing their
own system. Thus, the complete set of satellite systems used in positioning has been called the

DOL: 10.1201/9781003184263-14 349
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“Global Navigation Satellite System” (GNSS). Receivers using GPS satellites and another system
such as GLONASS are called “GNSS receivers”. With the use of these systems, there has been
synchronization of positioning information in any region of the Earth with high reliability and
low cost. GNSS surveys can be performed during day, night, rain or shine, and no cleared lines of
sight are required between survey stations. With this, this technology revolutionized conventional
surveying procedures, which relied on observed angles and distances to determine point positions
(Ghilani and Wolf, 1989; Alves and Silva, 2016). GNSS was composed of four individual systems
(Silva and Segantine, 2015):

o Global Positioning System (GPS): USA;

o Global Navigation Satellite System (GLONASS): Russia;
e Global Navigation Satellite System (Galileo): Europe;

o BeiDou Navigation Satellite System (BDS): China;

o Navigation with Indian Constellation (NavIC): India.

After full GPS operation, it is possible to obtain relative positioning with millimeter accuracy with
short observations of a few minutes. For distances greater than 5 km, GPS can be more accurate
than electronic distance meters used in polygon traverses. The advantages of GNSS systems are
(Schofield et al., 2007; Segantine, 2005; Alves and Silva, 2016):

e The results of measurements from a single line, called a “baseline”, will determine not only the
distance between the stations at the ends, but the direction components X, Y, Z, or E, N, h,
or longitude, latitude, and altitude, respectively;

o No sighting is required. However, one must have a clear view of the sky, to observe satellites;

e Some equipment is waterproof and can be used during day and night or in foggy conditions;

e The equipment can be used by only one person, without wasting time and effort;

e No high operator skill is required;

e The position can be obtained on land, at sea, or in the air;

o Baselines of hundreds of kilometers can be determined, without the need for extensive geodetic
networks, as in conventional surveys;

o Continuous measurements can be performed to improve deformation monitoring;

¢ Measurement stations do not need to be intervisible;

e Measurements can be performed under different weather conditions;

e Operates 24 hours a day;

o Worldwide coverage;

e High accuracy of position, velocity and time.

The disadvantages of GNSS are (Schofield et al., 2007; Alves and Silva, 2016):

o Sky visualization is required for satellite tracking, and could be a problem for surveying buildings
and engineering works. Equipment does not work well inside buildings or underground;

e The equipment can be expensive. One pair of GPS can cost the same as three or four electronic
total stations;

e The local projections and datum of a location must be known, as well as the satellite coordinate
system, in order to obtain regionally meaningful and representative points;

o The altitude value determined by satellite may not be the same as that used in an engineering
project, because the GPS coordinate system is centered on the Earth’s center of mass, so any
altitude of points on the Earth’s surface will be relative to a datum, or the surface of an ellipsoid.
Some GPS can display a geoidal model in software; however, the model can be coarse.

With the use of GNSS, it has been possible to determine specific positions with high precision and



14.4 Global Navigation Satellite Systems 351

accuracy within crops in agricultural areas. As a result, various observations and measurements
can be georeferenced. Decisions about the use of GNSS on farms must be based on particular needs,
operational management procedures, and understanding of positioning errors. Other important
issues are related to vehicle dynamics, use of pulled implements, and terrain conditions. Proper
leveling and alignment, as well as installation of GNSS are necessary for effective operation in
tillage. Poor quality of the steering control system, sloping terrain, or lack of implement alignment
can affect the performance of the navigation system (Alves and Silva, 2016).

14.4 Global Navigation Satellite Systems

The precise distances between satellites and calculation of receiver positions are determined based
on timing and signal information. In satellite surveying, satellites become the reference or control
stations, and the distances to these satellites are used to calculate receiver positions. In this case,
distances and angles can be observed from unknown ground station used to control known point
positions (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Global positioning systems have been divided into three segments (Schofield et al., 2007; Alves
and Silva, 2016):

e Spatial;
o Control;
o User.

In the case of the GPS system, the spatial segment consists of 24 satellites operating in six orbital
planes spaced at 60° intervals inclined at 55° from the Equator. Four additional satellites were
kept in reserve as spares. With this configuration 24 h of satellite coverage is obtained between
the latitudes of 80° N and 80° S (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The satellites operate in nearly circular orbits with an average height of 20200 km above Earth and
an orbital period of 12 sidereal hours, considering a sidereal day being approximately four minutes
shorter than a solar day. On the individual satellites, there is identification of pseudo-random noise
number (PRNs), satellite number or space vehicle number (SVN) and orbital positions (Ghilani
and Wolf, 1989; Alves and Silva, 2016).

Precise atomic clocks are used on the satellites to control the transmission time of the signals.
These clocks are extremely accurate, precise, and extremely expensive. The atomic clocks are
made of cesium or rubidium. Rubidium clocks can lose one second in 30000 years, while cesium
clocks can lose one second in 300000 years. Radioactive hydrogen clocks can lose one second in
30000000 years, and have been proposed for future satellites. For comparison, quartz crystal clocks
used in receivers can lose one second in 30 years. If receivers uses the same clocks as satellites,
their use would be prohibited, and would require users to be trained in the handling of hazardous
materials. So the clocks on the receivers are controlled by oscillations of a quartz crystal that,
while also accurate, are less precise than atomic clocks. However, these relatively low-cost timing
devices made it possible to develop relatively inexpensive receivers (Ghilani and Wolf, 1989; Alves
and Silva, 2016).

The control segment consists of monitoring stations to track the signals and follow the positions
of satellites over time. The first GPS monitoring stations were set up in Colorado Springs, Hawaii,
Ascension Island, Diego Garcia, and Kwajalein. The tracking information is relayed to the master
control station at the Consolidated Space Operations Center (CSOC) at Schriever Air Force Base
in Colorado Springs (Ghilani and Wolf, 1989; Alves and Silva, 2016).



352 14 GNSS Surveying

The master control station used the received data to make accurate predictions of the satellites’
orbits and correct clock parameters. This information is sent to the satellites and then transmitted
by them as part of their broadcast message to be used by receivers to predict satellite positions
and systematic clock errors (Figure 14.1) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

FIGURE 14.1: The U.S. Air Force’s eleventh launch of Boeing-built Global Positioning System
ITF satellite aboard a ULA Atlas V from Space Launch Complex 41, at Cape Canaveral, Florida,
October 31, 2015, at 12:13 p.m. EDT. (Courtesy of Michael Howard/SpaceFlight Insider.)

The GPS user segment consisted of two categories of receivers that are classified by their access
to two services offered by the system. These services are referred to as “Standard Positioning
Service” (SPS) and “Precision Positioning Service” (PPS). SPS is provided on the transmitted
L1 frequency, and more recently on L2, at no cost to the user. This service is initially developed
to provide accuracy of 100 and 156 m in the horizontal and vertical positions, respectively, with
a confidence level of 95%. However, improvements in the system and processing software have
substantially reduced the error estimates. The PPS is transmitted on frequencies L1 and L2 and
available to receivers with valid cryptographic keys, reserved almost exclusively for DoD use. This
service made it possible to obtain accuracy of 18 and 28 m, with a confidence level of 95%, in the
horizontal and vertical, respectively (Ghilani and Wolf, 1989; Alves and Silva, 2016).

14.5 GNSS Fundamentals

The precise signal travel time is used to determine the distance, or range, to the satellite. Consid-
ering a satellite in orbit ~20200 km above the Earth, the signal travel time will be ~0.07 seconds
after the receiver generates the same signal. If the time delay between the two signals is multiplied
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by the signal velocity (speed of light in a vacuum) ¢, the distance value to the satellite () can be
determined by (Ghilani and Wolf, 1989; Alves and Silva, 2016):

r=ct (14.1)

where t is the time the wave traveled from the satellite to the receiver and ¢, 299792458 m.

In satellite signal receivers, the distances have been determined to the satellites by the methods
of code ranging and carrier phase-shift measurements. Those that employed the code-matching
method are called “series mapping receivers”, and those that used phase-shift are called “series
evaluation receivers”. Receiver positions can be calculated based on observations made to multiple
satellites. The extraordinary accuracy used to determine time intervals can be verified with the
example where a time of 0.1 sec is wrong in a signal measurement. In this case, the distance will be
wrong by (0.1)(299792458) = 29979246 km. The best GPS receivers have enabled measurement
time within 1 nanosec (0.000000001 sec). An error of this magnitude will correspond to a distance
error of (0.000000001)(299792458) = 0.2997925 m (McCormac et al., 2012; Ghilani and Wolf,
1989; Alves and Silva, 2016).

# Error 1
e1<-0.1%299792458
el

## [1] 29979246

# Error 2
e2<-0.000000001%299792458
e2

## [1] 0.2997925

14.5.1 Code ranging

Code matching or code ranging is the method used to determine travel time from satellite signals
to the receiver. With travel times, distances can be calculated by the difference between satellite
and receiver coordinates. Knowing one range, the receiver would err on a sphere. If ranges are
determined by two satellites, errors would occur by the interception between two spheres. Thus,
the receiver would be somewhere within the circle determined by two satellites. If the interval for
a third satellite is added, this interval adds a sphere producing another intersecting circle. With
the addition of four satellites, the calculations at the receiver are adjusted to perform addition or
subtraction of time increments for all four measurements until an intersection solution is obtained
for all spheres (McCormac et al., 2012; Alves and Silva, 2016) (Figure 14.2).

In order to obtain a valid observation time, it is necessary to consider the systematic error (bias
in the clocks), and the refraction of wave that passes through the Earth’s atmosphere. In this
example, the bias of the receiver’s clock is the same for three distance intervals, because the same
receiver observes each range of variation. With the introduction of a fourth satellite, the bias of
the receiver’s clock is determined mathematically. With this procedure, the receiver clock can be
less accurate and less expensive (Ghilani and Wolf, 1989; Alves and Silva, 2016).
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FIGURE 14.2: Intersection between two and three spheres determining the probable position
of the receiver on a circle and at the intersection of two circles, respectively.
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14.5.2 Carrier phase-shift measurements

Measuring distances from the ground to satellites can be made more accurate by observing the
phase-shift of the signals at the time of their transmission by the satellite until they are received
at the base station. This procedure is similar to that used by electronic distance measuring
instruments, and enables to determine the fractional cycle of the satellite signal at the receiver.
The phase-shift is measured at ~1/100 of cycle. However, the measurement does not take into
account the number of full wavelengths of signal travel between the satellite and receiver. This
number is the integer ambiguity or ambiguity. Unlike electronic distance measuring instruments,
in satellites, a one-way form of communication is used, but since satellites are moving, their scales
constantly change and the ambiguity can not be determined by simply transmitting additional
frequencies. Therefore, different techniques are used to determine the ambiguity by additional
observations (Ghilani and Wolf, 1989; Alves and Silva, 2016).

14.6 Global Navigation Satellite System Signal

The orbiting GPS satellites continuously transmit a single signal, on the two carrier frequencies.
The carriers are transmitted in the microwave radio frequency band L identified with L1 and L2
signals at frequencies of 1575.42 and 1227.60 MHz, respectively. These frequencies derived from
the fundamental frequency f,, of 10.23 MHz. L1 and L2 bands are configured at frequencies 154
and 120 f,, respectively (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Different types of information (messages) are modulated on the carrier waves with the phase
modulation technique, similar to a radio station. Some information included in the transmitted
message are (Ghilani and Wolf, 1989; Alves and Silva, 2016):

¢ Almanac;

e Transmission ephemerides;

o Satellite clock correction coefficients;
o Ionospheric correction coefficients;

o Satellite condition (satellite health).

Developing a system for accurate measurement of travel time from satellite signal to receiver to
determine basic positions of occupied stations in real time, independently, is desired for different
geographic applications. In GPS, this is achieved by modulating the carriers with PRN codes. The
PRN codes consist of unique sequences of binary values (zeros and ones) that look like random
numbers, but are generated by a special mathematical algorithm called “return shift registers”.
Each satellite transmits two different PRN codes. The L1 signal is modulated with the precision
code, or P code, and the coarse acquisition code, or C/A code. The L2 signal is modulated only
with the P code. Each satellite transmits a single set of GOLD codes to identify the source
of received signals. This identification is important when tracking on several different satellites
simultaneously (Ghilani and Wolf, 1989; Alves and Silva, 2016).

C/A and P codes are used in older satellite technology. In recent satellites, new codes have been
included, such as the L2 signal, called L2C. In addition, the P code is being replaced by new
military codes, called code M. In 1999, the Interagency GPS Executive Board (IGEB) decided
to add a third civilian signal, L5, to ensure the safety of GPS life applications. The transmission
frequency of L5 is 1176.45 MHz. Both L2C and L5 are added to the ITF and III satellite block
(Ghilani and Wolf, 1989; Alves and Silva, 2016).
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In the C/A code, the frequency of 1.023 MHz is configured at a wavelength of ~300 m. This
code is accessible to all users and consisted of a series of 1023 unique binary digits (chips) for
each satellite. This chip pattern is repeated every millisecond in the C/A code. The P code has
a frequency of 10.23 MHz and a wavelength of ~30 m. This code is ten times more accurate for
positioning than the C/A code. The P code is repeated every 266.4 days. Each satellite assigns
a single segment pattern per week that is reset at midnight every Saturday. To meet military
needs, the P code is encoded with a W code to derive the Y code which can only be read by
receivers with counterfeit cryptographic keys. The code consists of a sequence of +1 or -1 states,
corresponding to the binary values 0 or 1. The biphasic modulation (signal shift) is accomplished
by 180° inversion in the carrier phase determining change in the initial states (Ghilani and Wolf,
1989; Segantine, 2005; Alves and Silva, 2016).

The need for one-way communication has made satellite positioning systems dependent on precise
timing of signal transmission. Imagine that the satellite transmitted a series of beeps, and that
the beeps are transmitted in a known irregular pattern. Now imagine that this same pattern is
duplicated synchronously (but not transmitted) at the receiving station. Once the transmitted
signal from the satellite travels to the receiver, its reception is delayed with respect to the signal
generated by the receiver. This delay can be measured and converted into a time difference. In
GPS, PRN code chips replace beep signals and the exact satellite code transmission time is placed
within the transmitted message, with the start time indicated by the front end of one of the chips.
The receiver simultaneously generates a duplicate PRN code. The time between the emission of
the satellite signal to the receiver is obtained by combining the incoming satellite signal with the
signal generated by the identical receiver. This produces the delay signal, which is converted into
the travel time. The distance to the satellite can be calculated knowing the signal travel time
and velocity. The transmission message from each satellite is identified with a hand-over word
(HOW) code to help in the code ranging, which consists of some identification bits, flags, and a
number. The time of week (TOW) is determined after four repetitions of the HOW number. The
TOW marks the end of the next section of the message. HOW and TOW enables detection of
correspondence between the signal sent from the satellite and received by the receiver to determine
signal time delay (Figure 14.3) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

1 . .
! subframe of message
Receiver —1
signal || | |_
L i - —0
| +— > | ; : .
1 Time delay 1 matching subframe of message

Delayed satellite signal ||(')\\‘| | ||||| | ||| | || | | —‘O

FIGURE 14.3: Determination of GPS signal travel time by code ranging.

The navigation message is transmitted relative to GPS time at the rate of 50 bits per second
(bps), with a duration of 30 sec, modulated on the L1 and L2 carriers. The duration of a bit is 20
ms. The navigation message with satellite clock and orbit corrections, ephemeris information, and
satellite health determines a 1500 bit message, called a “data block”. The information is formatted
into five sub-blocks of 6 sec duration in order to compose a block of 30 sec duration. Each sub-
block is made up of 10 words with 30 bits each. The first word in each block is a telemetry word
(TLM). The second word in each block is a HOW code word with the Z-counter number. The
Z-counter is the integer number of 1.5 sec intervals from the beginning of the GPS week that
identified the epoch at which the data is recorded. The final eight words are generated by control
tracking (Segantine, 2005) (Figure 14.4).



14.6 Global Navigation Satellite System Signal 357

Sub-block: 10 words, 30 bits/word, 6 seconds

A _
(1 TLM HOW satellite clock and atmospheric corrections

CZ TLM HOW ephemerides

(3 TLM HOW ephemerides (continued)

(4 TLM HOW message

@ W W W W

<1 block: 30 seconds: 1500 bits

(5 TLM HOW almanac (25 blocks)

FIGURE 14.4: GPS data signal format.

In the current receivers, operation is observed with code or carrier phase reception. The satellite
signal is tracked in the receiver to perform instantaneous positioning calculations.

Considering social class of use, receivers vary as:

o Civil;
o Military.

Considering applications, receivers vary as:

o Navigation;
o Aviation;
o Topography.

Considering signal frequency, receivers vary as:

e Single;
e Dual.

Considering the number of channels, receivers vary as:

e Single channel,;
o Multichannel.

Considering the type of channels, receivers vary as:

e Sequential;
o Multiplexed.
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Considering the type of signals, receivers vary as:

o C/A code;
e P code.

The following instruments are observed in a GNSS receiver (Segantine, 2005):

¢ Antenna with pre-amplifier to detect electromagnetic waves emitted by satellites;

o Radio frequency section to identify and process the signals;

e Microprocessor for control, sampling and processing of the data;

e Quartz oscillator that generates an internal wave in the receiver with characteristics similar to
the wave external to the antenna;

o Interface for user control of observation sessions;

o Power supply with batteries to supply instruments;

o Receiver controller;

e Memory for data storage.

14.7 Satellite Coordinate Reference System

German astronomer Johannes Kepler (1571-1630) established three laws to define the motion of
planets around the sun, which also applied to the motion of satellites around the Earth (Schofield
et al., 2007; Alves and Silva, 2016):

¢ As satellites move around the Earth in elliptical orbits, the Earth’s center of mass is located at
focus points G. The other focus G’ is not used. In the implication of this law, a satellite will at
some point be closer or further away from the Earth’s surface according to its orbit position.
The orbits of GPS satellites are close to circular and therefore have very small eccentricity;

e The radius vector from the center of the Earth to the satellite determines equal areas at equal
time intervals. Therefore, a satellite’s velocity is not constantly the same. Satellite velocity is
minimum when passing at apogee, farthest from the Earth’s center, and maximum, when at
perigee closest approach;

o The square of the orbital period is proportional to the cube of the semimajor axis a, T2 =

a® constant. The value of the constant is demonstrated by Newton:

= (14.2)
where 1 is the Earth’s gravitational constant, equal to 398601 km? s—2.
Therefore,
au
T2 = L 14.3
472 ( )

Thus, for any orbital eccentricity of the satellite, on the same semimajor axis, the period is the
same.

Therefore, these laws defined the orbit geometry, speed variation of the satellite along its orbital
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FIGURE 14.5: Elliptical orbit (top) and Kepler’s second law (bottom).

path, and the time required to complete an orbit (Schofield et al., 2007; Alves and Silva, 2016)
(Figure 14.5).

When determining the positions of points on the Earth based on satellite observations, three
different reference coordinate systems are important (Ghilani and Wolf, 1989; Alves and Silva,
2016):

o Satellite positions, at the time of observation, specified as a satellite coordinate system;

o Transformation of satellite positions into a 3D geocentric rectangular coordinate system, phys-
ically related to the Earth;

¢ Determining the positions of points on the Earth by a geocentric coordinate system:;

o Transformation from geocentric coordinates to geodetic coordinate system with specific datum.
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14.8 Geocentric Coordinate System

Different coordinate reference systems are important when determining positions of points on
Earth based on satellite observations. Satellite positions are specified by the satellite coordinate
reference system at the instant they are observed. These systems are 3D rectangular systems
defined by the orbits of the satellites. Satellite positions are transformed into a 3D rectangular
geocentric coordinate system, physically related to the Earth. As a result of satellite positioning
observations, positions of new points on Earth are determined in this coordinate system. Once a
satellite is placed in orbit, its motion within the orbit is governed by the Earth’s gravitational force.
However, there are a number of other less important factors involved, including the gravitational
forces exerted by the sun and the moon, as well as solar radiation. These forces are not uniform so
that satellite motions can vary. Ignoring all forces except the gravitational pull of the Earth, the
idealized orbit of a satellite is elliptical, with one of the foci at G, at the Earth’s center of mass.
The satellite reference coordinate system is characterized by Xg, Yy, Zg. Perigee and apogee are
defined as the closest and farthest orbit points between the satellite and G, respectively. The
apsid line joins the perigee and apogee, crossing two foci, and is the reference axis of Xg. The
origin of the Xg, Yg, Z4 coordinate system occurs at G, whose axis lies in the orbital midplane;
the Y axis lies in the orbital midplane and, Zg, perpendicular to that plane. The Zgy coordinate
values represent the departure of the satellite from the generally small, mean orbital plane. A
satellite at position S; will have 3D spatial Cartesian coordinates, Xg¢;, Yq;, Zg;. The position
of the satellite in orbit can be calculated at any instant of time, based on orbital parameters that
are part of the transmission ephemeris (Ghilani and Wolf, 1989; Alves and Silva, 2016).

After defining the orbit in space, the satellite is located in reference to the perigee point through
the f angle. The XY Z spatial coordinate system is originated at the geocenter, GG. The spatial
coordinates of the satellite at time, ¢, are (Figure 14.6) (Schofield et al., 2007; Alves and Silva,
2016):

Xg =rcosf (14.4)
Yg =rsenf (14.5)
Zg =0 (normal orbiting) (14.6)

where 7 is the distance from the Earth to the satellite center.

The angular parameters required to perform the conversion from the satellite reference coordinate
system to the geocentric system are (Ghilani and Wolf, 1989; Schofield et al., 2007; Alves and
Silva, 2016):

e The angle i of inclination between the orbital plane and the Earth’s equatorial plane;

o The i argument of the perigee, referring to the angle in the orbital plane from the Equator to
the apsid line;

e The right ascension of the ascending node, §2, referring to the angle between the Earth’s equa-
torial plane from the vernal equinox to the line of the ascending node, in the equatorial plane;

e The hour angle between Greenwich and the vernal equinox in the equatorial plane, GH A~.

These parameters must be known, in real time, for each satellite, based on mathematical models
for predicting the orbits. Satellite coordinates in the geocentric system are determined for specific
epochs based on observations at monitoring stations and distributed using precise ephemerides
to achieve high accuracy (Figure 14.7).
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FIGURE 14.6: Orbital satellite ellipse in space.

14.9 Geodetic Coordinate System

Although the point positions of a satellite survey are calculated in the geocentric coordinate
system, it is not convenient to use them by geomatics engineers because (Ghilani and Wolf, 1989;
Alves and Silva, 2016):

o Geocentric coordinates show extremely large values, considering their origin at the center of the
Earth;

¢ Axes are not related to conventional north-south or east-west directions on the Earth’s surface,
considering the location of the XY axis in the Equator plane;

e There is no indication of relative elevations between points.

With the advent of the GNSS positioning system, there is a need for transformation of spatial
Cartesian coordinates into geodetic coordinates and vice versa. Therefore, 3D Cartesian coordi-
nates are converted to geodetic coordinates of latitude (¢), longitude () and altitude (h), for the
purpose of greater meaning and user convenience. The reference ellipsoid used for most of the
work is the 1984 World Geodetic System ellipsoid (WGS-84). Any ellipsoid can be defined by two
parameters, for example, the semimajor axis (a), and the flattening ratio (f). For the WGS-84
ellipsoid, these values are a = 6378137 m; f = 1/298.257223563 (Ghilani and Wolf, 1989). Con-
versions from the 3D Cartesian coordinate system, (X, Y, Z), to the geodetic coordinate system



362 14 GNSS Surveying

N
Z,
Satellite orbital plane
n time t,
Line of
apsides
S
Equatorial
Plane ( Y.
Vernal
equinox
=

FIGURE 14.7: Parameters involved in determining the spatial orbit and transforming the satel-
lite coordinate system to the geocentric coordinate system.

(¢, A, h) can be performed (Soler and Hothem, 1988; Ghilani and Wolf, 1989; Alves and Silva,
2016) (Figure 14.8).

The Cartesian coordinates of point P can be calculated from their geodetic coordinates (Soler
and Hothem, 1988; Ghilani and Wolf, 1989; Silva and Segantine, 2015; Alves and Silva, 2016):

XP = (RNP + hP)COSd)PCOS)\P (147)

YP - (RNP + hP)COS¢PS€n)\P (14.8)

Zp=|[Ryp(1—e?)+ hp|sengp (14.9)
a

(14.10)

Ryp = —/————
NPT —e2sen¢p

where X P, Y P, ZP are the Cartesian coordinates of any point P, e, the eccentricity of the WGS-
84 reference ellipsoid (0.08181919084), Ry p, the radius of the main vertical of the ellipsoid at
point P, and, a, the semimajor axis of the ellipsoid. North latitudes are taken as positive, and
south latitudes as negative. Similarly, east longitudes are positive, and west longitudes negative.
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a

FIGURE 14.8: Parameters used in the transformation from 3D Cartesian coordinate systems
to geodetic coordinate systems.

The Cartesian coordinate conversion of any point P and its geodetic value can be obtained based
on the following steps (Soler and Hothem, 1988; Ghilani and Wolf, 1989; Silva and Segantine,
2015; Alves and Silva, 2016):

1. Determine the diagonal distance, Dp:

Dp= /X2 + Y2 (14.11)

2. Determine the longitude, Ap:

Dp—X
Ap = 2tan (=E—L

v, ) (14.12)
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3. Determine the approximate value of the latitude, ¢:

Z
=tan "L — 14.13
(bO an [DP<1 . 62)] ( )
4. Determine the approximate radius of the first vertical Ry using ¢g:
a
Ry — _ 14.14
N /1 —e2sen2¢ ( )
5. Determine a best value for latitude by:
Z R
6 — tan-1( 2 Binpsendy (14.15)

Dp
Repeat the previous steps until the change in ¢ is minimal.

6. Determine the geodetic altitude of the station, where for latitudes less than 45°, adopt:

hp = —R 14.16
P cosdp NP ( )
At latitudes greater than 45°, adopt:
Z
hp=—L— —Ryp(l—e? 14.17
P sendp np( e’) ( )

Having the ellipsoidal altitudes and known elevations, we can determine geoidal altitudes with
GPS (Ghilani and Wolf, 1989; Alves and Silva, 2016):

Ngnsgs =h—H (14.18)

The value obtained should be compared with that calculated in the geoidal model and the differ-
ence is determined by:

Ay = Ngygs — N,

model (1419)
This procedure should be used for several landmarks dispersed in an area and the orthometric
altitude (H) is corrected by an average value Ay of the region:

H=h- (Nmodel + AN'mean) (1420)

In the R package nvctr (Spinielli and EUROCONTROL, 2020) functions for non-singular po-
sition calculations and geographic position calculations for ellipsoidal and spherical models are
implemented according to Gade (2010). Distance calculations are also implemented in the nvctr
package. In the n vector structure, the normal vector to the Earth’s ellipsoid (called n vector)
is used as a non-singular position representation which is convenient for practical position cal-
culations. With the use of the n vector, simplicity of use and exact answers are observed for all
global positions and all distances, in both ellipsoidal and spherical Earth models (Spinielli and
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EUROCONTROL, 2020). The application of this package is realized in the Solved Exercises of
this chapter in converting Cartesian spatial coordinates to geodetic coordinates and vice versa.

Reports of accurate algorithms for transforming geocentric coordinates into geodesic coordinates
are implemented computationally in FORTRAN in 1989 (Borkowski, 1989). A closed-form alge-
braic method for transforming geocentric coordinates to geodesic coordinates is proposed with
a new expression excluding indeterminacy and sensitivity to error rounding around the 180°
longitude discontinuity (Vermeille, 2004) compared to an earlier work (Vermeille, 2002). The ef-
fectiveness of these algorithms should be evaluated after computational implementation in later
work.

14.10 GNSS Surveying

Different methods of observing GNSS data have been applied in surveying. For quality surveys,
a careful pre-analysis was necessary in order to make an optimal planning of the observation
session. An observation session refers to the period of time when receivers used to receive satellite
signals simultaneously. Upon completion of a session, all receivers except one are taken to dif-
ferent observation stations. Sessions continued until all observations required by the project are
completed, such as surveying a rural property or locating points in different environments (Alves
and Silva, 2016).

In accurate surveying, dual-frequency receivers are preferred over single-frequency ones because
(Segantine, 2005):

e Data are collected faster;
o Long distances from the base are observed with greater accuracy;
e FErrors, such as ionospheric refraction, are eliminated.

Considering the available equipment and surveying error constraints, the selection of the appro-
priate surveying method varies according to (Ghilani and Wolf, 1989; Alves and Silva, 2016):

e Level of accuracy required in the final coordinates;
¢ Type of environment to be surveyed;

e Type of equipment available;

o Extent of area surveyed;

o Plant canopy and other site conditions;

o Computer programs available to analyze the data.

Surveying methods performed with satellite positioning technology are subdivided into (Silva and
Segantine, 2015):

¢ Absolute positioning;
o Relative positioning;
o Differential positioning.

14.10.1 Absolute positioning with GNSS
In absolute positioning with GNSS, the measurement is based on pseudodistances between the

receiving antenna and at least four satellites by simple positioning. Using the precise point po-
sitioning (PPP) method, precise ephemerides are used in the post-processing of data tracked at
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the point of interest. Accuracy of 5 to 10 cm can be obtained with single frequency receivers, and
1 to 5 em with dual frequency receivers (Silva and Segantine, 2015). Accurate ephemeris data is
obtained via the Internet (NASA, 2020). The PPP service is available for post-processing data in
RINEX format via the Internet (IBGE, 2020).

14.10.2 Relative positioning with GNSS

In the GNSS relative positioning method, two or more receivers are used to track the same
satellites at a given time. A vertex with known coordinates is used to install the antenna and
base receiver assembly. With a remote receiver (rover), the coordinates of points are surveyed by
installing another antenna and receiver set on the remote vertices. The spatial vector determined
between the observation points is called the “baseline vector”. The coordinates of the remote point
are obtained by post-processing of points surveyed in the field (Figure 14.9) (Silva and Segantine,
2015).

FIGURE 14.9: Baseline vector component determination in GNSS surveying.

The relative positioning between two points A and B, can be expressed by (Ghilani and Wolf,
1989; Alves and Silva, 2016):

Xp=X,+AX (14.21)
Yp =Y, + YDeltaY (14.22)

where (X 4, Yy, Z4) are the geocentric coordinates at base station A, (X g, Yz, Z5), the geocentric
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coordinates at unknown station B and, (A, Ay, A ), the basic components of calculated baseline
vectors.

Relative positioning involves the use of two or more receivers simultaneously observing pseudodis-
tances at line ends. Simultaneity is involved making observations by the receivers at the same
time. It is also important that the receivers record data at the same time interval. This inter-
val varies according to the purpose of the study and the final accuracy required; however, the
most common intervals are 1%, 27, 5%, 10”7, or 15”. Assuming that simultaneous observations are
recorded, different linear combinations of equations can be performed in order to eliminate some
single, double, and triple difference errors (Figure 14.10).

FIGURE 14.10: Recording simultaneous GNSS observations with different combinations: single
difference (left), double difference (middle), and triple difference (right).

In simple difference, there is subtraction of two simultaneous observations made for one satellite
from two points. This difference eliminates the satellite clock bias and some of the ionospheric
and tropospheric refraction. This process would also eliminate the effects of selective availability
if it was enabled. The double difference referred to the difference of two single differences obtained
from two satellites j and k. This procedure eliminates the receiver clock bias by considering two
single differences. With the triple difference, there is a difference between two double differences
obtained in two different time periods. This difference eliminates the whole number of ambiguity,
leaving only the differences between phase-shift and geometric range. The importance of using the
triple difference equation in the solution is that it removed entire ambiguities without cycle loss.
Cycle loss occurred in the following main situations (Ghilani and Wolf, 1989; Alves and Silva,
2016):

e Obstructions;
e Low signal-to-noise ratio (SNR);

e Incorrect signal processing.

Signal obstructions can be minimized by careful selection of tracking stations. Low SNR can be
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caused by undesirable ionospheric conditions, multipath, high receiver dynamics, and low satellite
elevation. Malfunctioning satellite oscillators can also cause cycle loss, but this has occurred
rarely. It should be noted that currently computer programs for GNSS data processing rarely use
triple difference as solutions of integer ambiguities that are quickly determined by more advanced
techniques (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Relative surveying can be performed with static relative and kinematic relative surveying tech-
niques. In the static relative mode, antennas of the base receiver and the remote receiver must
remain static throughout the data collection period. In kinematic relative surveying, only the
base station antenna is kept static over a point of known coordinates, and the other antennas
are moved over the points of interest during data collection. In kinematic on-the-fly positioning,
no static initialization is required as the measurement algorithm is initialized during the remote
antenna displacement (Silva and Segantine, 2015).

14.10.3 Differential positioning with GNSS

In the GNSS differential positioning method, the same characteristics of relative positioning occur;
however, the differential corrections between the known base station coordinates calculated by
GNSS positioning are transmitted to the remote receiver by telemetric communication in order
to obtain the remote antenna coordinates in real time (Figure 14.11)(Silva and Segantine, 2015).

Real-time kinematic (RTK) positioning is considered a satellite navigation technique used to
enhance the precision of position data derived from GNSS, providing real-time corrections, up
to centimeter-level accuracy. In practice, RTK systems use a single base-station receiver and a
number of mobile units. The base station re-broadcasts the observed phase, and the mobile units
compare their own phase measurements with the one received from the base. The most popular
way to achieve real-time, low-cost signal transmission is to use a radio modem, typically in the
UHF band. RTK provides accuracy enhancements up to about 20 km from the base station
(Rietdorf et al., 2006).

Construction projects are performed by placing stakes in specific locations. The RTK surveying
method enables to perform the design of projects by manual location in the field (Figure 14.12), as
well as to guide vehicle during the construction process or when performing agricultural practices.
This technology has been termed as machine control and enables the operator to see position of
points on the construction project, cut and fill leveling in real time (Ghilani and Wolf, 1989; Alves
and Silva, 2016).

The RTK surveying technique has become the most used in topographic surveys for its ease of use,
velocity and accuracy obtained, with emphasis on the following applications (Silva and Segantine,
2015):

o Detail surveying;

o Cadastral surveying;

e Location of construction sites;

¢ Machine automation for agriculture;

¢ Machine automation for civil construction.
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Base

station

FIGURE 14.11: Differential corrections performed between base receiver and rover with com-
patible internal radios by surveying in RTK method.

14.11 GNSS Observation Errors

Electromagnetic waves can be affected by different sources of error during transmission. Some of
the main errors that affect the quality of coordinates observed at ground stations after GNSS
survey are (Ghilani and Wolf, 1989; Alves and Silva, 2016):

o Satellite and receiver clock bias;
e Jonospheric and tropospheric refraction.

Other errors in GNSS surveying are (Ghilani and Wolf, 1989; Alves and Silva, 2016):

o Satellite ephemeris errors;

o Multipath;

o Instrument leveling and centering at the point;
¢ Antenna height measurement;

o Satellite geometry;

o Selective availability (before May 1, 2000).

The advantage of satellites located ~ 20200 km above the Earth is the occurrence of similar
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FIGURE 14.12: Base receiver and rover with compatible internal radios used in surveying the

avenues of townhouse using the RTK method.



14.11 GNSS Observation Errors 371

atmospheric interference for surveys performed at close time intervals. With this, in the mod-
els used, atmospheric effects on the signal are virtually eliminated. However, since signals from
satellites located at the observer’s horizon pass through a larger layer of atmosphere than signals
above the horizon, signals from satellites below a certain threshold angle can be omitted from the
observations based on an elevation mask. The specific value of this angle varies between 10° and
20°, depending on the desired accuracy (Figure 14.13) (Ghilani and Wolf, 1989; Alves and Silva,
2016).

FIGURE 14.13: Satellite mask angle.

With the transmitted ephemeris, it is possible to predict satellite positions. The predicted orbital
position has errors as a function of varying gravity, solar radiation, and other anomalies. In the
phase-shift method, satellite position errors are translated directly into the calculated positions
at ground station bases. This problem is reduced by updating orbital data based on satellite
positions determined at the tracking stations. A disadvantage of this situation is the delay in
obtaining updated data. The updated ephemerides in situations after surveying are (Ghilani and
Wolf, 1989; Alves and Silva, 2016):

o Ultrafast ephemerides;
o Fast ephemerides;
o Precise ephemerides.

The ultrafast ephemerides are available twice a day, the fast ephemerides within two days, and
the precise ephemerides after two weeks. Ultrafast and fast ephemerides are sufficient for most
surveying applications (Ghilani and Wolf, 1989; Alves and Silva, 2016).

Regarding multipath, this type of error occurs when a satellite signal reflects from a surface and
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is directed to the receiver. This determines the arrival of multiple signals from one satellite at the
receiver. Vertical structures such as buildings, fences, and poles are examples of reflective surfaces
that can cause multipath errors (Figure 14.14). Mathematical techniques have been developed to
eliminate these unwanted reflections, but in extreme cases, there can be loss of receiver signal
due to blocking. This can be caused not only by multipath, but also by high ionospheric activity
(Ghilani and Wolf, 1989; Alves and Silva, 2016).

/

FIGURE 14.14: Multipath caused by satellite signal reflection on building and roof of a house.

In satellite surveying, pseudodistances are observed at the receiver antennas. For precision work,
antennas must be mounted on tripods, leveled and centered over a point. The improper setting
of the instrument above the point is a potential source of error. Thus, it is essential to adjust the
tripod with optical plummet and leveling base. The antenna height above occupied point is also
another source of error (Figure 14.15) (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The ellipsoidal altitude is determined at the antenna’s phase center. We must use the same
antenna on a receiver in an accurate survey or account for phase center offsets in GNSS data
post-processing.

The geometry of observed satellites can be weak or strong. Small angles between satellite signals
received by the receiver determine weak geometry and larger errors. On the other hand, in the
strong geometry, larger angles between received satellite signals and the receiver determines a
better solution (Figure 14.16). The effect of geometry on position accuracy is determined by least
squares (Ghilani and Wolf, 1989; Alves and Silva, 2016).

The different types of errors that have occurred in satellite positioning, if no corrections or com-
pensations are made, can be of the order of +7.5 m, as a result of ionospheric refraction. In
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FIGURE 14.16: Weak (left) and strong (right) geometry in satellite observation.
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this case, satellite geometry errors are not included. The error is minimized including L2C and
L5 signals. The total user equivalent range error (UERE) drops to approximately +2.8 m with
inclusion of the L2C and L5 signals, by reducing the ionospheric refraction error. The UERE is
determined by the square root of the summation of each error source squared (Ghilani and Wolf,
1989; Alves and Silva, 2016):

UERE = \/ sumerror? (14.24)

%

Based on the number and position of satellites visible at a given time and location, the least
squares method can determine an estimated accuracy of the point coordinate, called “dilution of
precision” (DOP). The DOP is calculated by error propagation. The DOP, when multiplied by
the expected GPS errors, results in the geometry errors of the observed satellite constellation.
Thus, the smaller DOP value, the better the expected accuracy in calculated ground station posi-
tions. The DOP factors of most interest in the survey are position dilution of precision (PDOP),
horizontal dilution of precision (HDOP), and vertical dilution of precision (VDOP). The best
possible satellite constellation has the mean value for HDOP less than two and PDOP less than
five. Other factors, such as geometry dilution of precision (GDOP) and time dilution of precision
(TDOP) can also be evaluated, but are of less importance in the survey (Table 14.1) (Ghilani and
Wolf, 1989; Alves and Silva, 2016).

TABLE 14.1: Important categories of dilution of precision (DOP) with meanings in terms of
standard deviation and equations.

Max. Accept.
Type of DOP Standard Deviation Equation Value
PDOP (Positional o in geocentric Vok + o2 +0% 6
DOP) coordinates, X, Y, Z
HDOP (Horizontal o in local coordinates, x, ok +oi 3
DOP) Yy
VDOP (Vertical o in altitude, h oh 5
DOP)
TDOP (Time DOP) o in time, ¢ ot
GDOP (Geometric o in position and time Vo + 0¥ + 0% + +o?
DOP)

Multiplying the DOP by the probable error coefficient and UERE, the probable positional error
by precision dilution (EP) at 95% probability is determined by:

EPy; = £0DOP 1.96 UERE (14.25)

Even though the satellite constellations of global positioning systems are not complete, manufac-
turers of satellite receiver technology are already building receivers that use all available GNSS.
The advantage of using multiple systems is that more satellites will be available for tracking by
receivers. By combining these systems, the surveyor can expect improvements in velocity and
accuracy. In addition, the combination of systems will provide a viable method of achieving sat-
isfactory satellite positioning in difficult areas such as canyons, deep mines, natural areas, and
urban areas with obstacles such as buildings and trees (Ghilani and Wolf, 1989; Alves and Silva,
2016).
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14.12 Computation

GNSS devices are present in a variety of applications, from watches to cars to cell phones. GNSS
datasets can be used to solve transportation situations (Lovelace et al., 2019b), farm machinery,
determine animal walking patterns, and collect biotic and abiotic samples along a traveled path.
In this computational practice the use of Garmin Forerunner 235 GPS data is emphasized in a
walk performed in rural and urban areas of Lavras city, Minas Gerais, Brazil. Data are processed
and mapped in order to extract information about the walk performed and map the path traveled
with auxiliary databases from the Internet.

The R package sf (Pebesma et al., 2021) is used to process the GPS data in order to perform
statistical calculations and map the path traveled. The R packages tmap (Tennekes, 2018; Tennekes
et al., 2020) and mapview (Appelhans et al., 2020) are used to perform interactive web region
mapping with algorithms used in the transportation field (Lovelace et al., 2019a,b).

14.12.1 Installing R packages

The install.packages function is used to install the sf, tmap and mapview packages in the R
console.

14.12.2 Enmnabling R packages

The library function is used to enable the sf, tmap and mapview packages in the R console.

library(sf)
library(tmap)
library(mapview)

14.12.3 Obtaining and mapping GPS garmin forerunner 235 data

The gpx data of hiking performed with GPS garmin forerunner 235 used in the computational
practice is obtained using the download. file function.

The data is unzipped with the unzip function.

The working directory into which the data is imported can be observed using the getwd function.

The data is imported into R with the st_read function.

rota<- st_read("files/activity_4871799754.gpx", layer = "tracks")

## Reading layer ‘tracks' from data source

## " C:\bookdown\surveying-with-geomatics-and-r_R1_03102021\files\activity_4871799754.gpx"'
##  using driver 'GPX'

## Simple feature collection with 1 feature and 12 fields

## Geometry type: MULTILINESTRING
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## Dimension: XY
## Bounding box: xmin: -44.97712 ymin: -21.21822 xmax: -44.96131 ymax: -21.21166
## Geodetic CRS: WGS 84

The imported data is mapped with the plot function (Figure 14.17).

plot(rota[l], axes=T, col="black")
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FIGURE 14.17: Mapping a GPS registered route with sf package functions.

The route can also be mapped using the qtm function from the R package tmap.

qtm(rota)

14.12.4 Mapping the route with Internet database spatial infrastructure

The interactive function of tmap is enabled with the ttm function to obtain an interactive visual-
ization of the map on the Internet. Next, route vectors are mapped with the qtm function. In this
case, it was possible to better exploit the map zoom, as well as background themes with existing
vector and remote sensing image bases.

# Enable interactive display of the tmap
ttm()

# Map with qtm

gtm(route)

An interactive web visualization, with the same database superimposed on a very high spatial
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resolution satellite image of the area as well as the digital elevation model and public utilities

cadastral information, is performed using the mapview function from the mapview package (Figure
14.18).

mapview: :mapview(rota)

FIGURE 14.18: Mapping a GPS registered route over satellite imagery with mapview.

14.12.5 Importing route data by points and performing time and speed cal-
culations

Data can be imported by the sf package by different ways of reading simple features from the file
as needed:

e sf::st_read(), returned a sf-data.frame, an object of class c("sf", "data.frame");

e sfi:read_sf(), returned an sf-tibble, an object of class c("sf", "tbl_df", "tbl",
"data.frame");

o sf::st_as_sf(), returned just an sf, from class data.frame.

In this case, the data is imported with the read_sf function.
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pRote = read_sf("files/activity_4871799754.gpx",
layer = "track_points")

The plot function is used for a preview of the imported vector attribute point data (Figure 14.19).

plot(pRote, max.plot=5)
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FIGURE 14.19: Route mapping of attribute points recorded by GPS with sf package functions.

The statistics of the time spent on the route are obtained with the summary function.

summary (pRote$time)

## Min. 1st Qu. Median
## "2020-05-02 16:57:44" "2020-05-02 17:09:20" "2020-05-02 17:18:47"
# Mean 3rd Qu. Max .

## ""2020-05-02 17:20:09" "2020-05-02 17:33:00" "2020-05-02 17:44:16"

Afterward, a graph of the time measurements is made using the plot function (Figure 14.20).

plot(pRote$time, l:nrow(pRote))

The time resolution of measurements can be determined with the difftime function.
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FIGURE 14.20: Time mapping as a function of route traveled with GPS.

difftime(pRote$time[11], pRote$time[10])

## Time difference of 1 secs

A function is defined to convert points to lines in order to calculate the speed, v, along the

trajectory.

points2line_trajectory = function(pRote) {
c <- st_coordinates(pRote)
i <- seq(nrow(pRote) - 2)
1 <- purrrsezmap(i, ~ sf::st_linestring(c[.x:(.x + 1), 1))
v <- purrr::map_dbl(i, function(x) {
geosphere: :distHaversine(c[x, ], c[(x + 1), 1) /
as.numeric(pRote$time[x + 1] - pRote$time[x])
}
)
1fc <- sfeist_sfc(l)
a <- seq(length(lfc)) + 1
p_data <- cbind(sf::st_set_geometry(pRote[a, ], NULL), v)
sfsist_sf(p_data, geometry = 1fc)

The conversion function from points to lines is used to map the speed along the trajectory.

1 <- points2line_trajectory(pRote)
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The speed map along the trajectory is obtained using the plot function (Figure 14.21).

plot(l["v"], lwd = 1$v, axes=T)

T
44975 44970 Ad0es

FIGURE 14.21: Mapping the speed at which the route was traveled with GPS.

14.13 Solved Exercises

14.13.1 Name the main components of a GINSS receiver.

A: Antenna, pre-amplifier, signal processor, oscillator, microprocessor and memory.

14.13.2 What are the parts (segments) of the global positioning satellite sys-
tem?

A: User segment, control segment, and space segment.

14.13.3 Explain the difference between GPS and GNSS.

A: The Global Positioning System (GPS) was developed by the US Department of Defense (DoD)
and, the Global Navigation Satellite System (GNSS) refers to the complete set of satellite sys-
tems used in positioning, including positioning systems developed in countries, such as those in
continental Europe, the US, Russia, and China.
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14.13.4 Name one advantage of GNSS surveying over conventional sighted
instrument surveying.

A: In GNSS surveying, baselines of hundreds of kilometers can be determined, without the need
for extensive geodetic networks, as in conventional surveying.

14.13.5 Calculate the orthometric altitude of a station as a function of the
geodetic altitude.

Required information: Geodetic altitude = 59.1 m; geoidal swell = -21.3 m.

A: The orthometric altitude is 80.4m.

# Data

h<-59.1

N<--21.3

# Orthometric altitude
H<-h-N

H

## [1] 80.4

14.13.6 Determine the geodesic coordinates of a point with known spatial
Cartesian coordinates.

Required information: The spatial Cartesian coordinates X, Y, Z are 1241581.343, -4638917.074,
and 4183965.568 m, respectively.

A: The exercise is solved using functions from the nvctr package. The longitude, latitude and
altitude coordinates are -75.01628°, 41.25506°, and 312.3907 m, respectively.

library(nvctr) # Enable Package

# Data

x<-1241581.343

y<--4638917.074

7z<-4183965.568

# Create a numerical vector of coordinates
c<-c(x, y, z)

# Convert cartersian coordinates to n-vector
n_EB_E <- p_EB_E2n_EB_E(c)

# Convert n-vector to latitude and longitude in radians
g<-n_E2lat_lon(n_EB_E$n_EB_E)

# Convert latitude and longitude to degrees
(deg(g))

## [1] 41.25506 -75.01628
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# Note that altitude z_EB = -height
-1%xn_EB_E$z_EB

## [1] 312.3907

14.13.7 Determine spatial Cartesian coordinates of the point A using the
WGS-84 ellipsoid.

Required information: Latitude, longitude and geodetic altitude of point A are 41°15"18.2106" N,
75°00"58.6127" W, 312.391 m, respectively.

A: The exercise is solved using functions from the nvctr package. The geocentric coordinates X,
Y, Z of A are 1241581.3427; -4638917.0743, and 4183965.5682 m, respectively.

# Data

lon<--(75+58.6127/3600)

lat<-(41+15/60+18.2106/3600)

alt<-312.391

# Create a numeric vector of coordinates

m<-c(lon, lat, alt)

# Convert coordinates into n-vector

n<-lat_lon2n_E(rad(m[2]), rad(m[1]))

# Convert n-vector to Cartesian coordinates

c<-n_EB_E2p_EB_E(n_EB_E=n, z_EB = -m[3], a = 6378137,
f = 1/298.257223563)

# Evaluate the results to 4 decimal places

c4<-format(c, nsmall=4)

c4

## [1] " 1241581.3427" "-4638917.0743" " 4183965.5682"

14.14 Homework

Use the set of theory equations in this chapter to check the results obtained with the nvctr package
in the Solved Exercises section. Perform a field practice with GNSS and plot the results with the
sf package.

14.15 Resources on the Internet

As a study guide, slides and illustrative videos are presented about the subject covered in the
chapter in Table 14.2.
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TABLE 14.2: Slide shows and video presentations on topographic surveying with GNSS.

Guide Address for Access
1 Slides on global positioning satellite systems in geomatics®
2 RTK receiver with centimeter precision?
3 Practices for reducing GNSS surveying errors®
4 GNSS surveying in RTK mode*
5 Surveying indirect measurements with GNSS®

14.16 Research Suggestion

The development of scientific research on geomatics is stimulated by the activity proposals that
can be used or adapted by the student to assess the applicability of the subject matter covered
in the chapter (Table 14.3).

TABLE 14.3: Practical and research activities used or adapted by students using topographic
surveying with GNSS.

Activity Description
1 In the content about satellite positioning system, interest may arise to do the work
based on measurements and determinations of geodetic coordinates over time
2 Carry out static measurement with GNSS in the field for a few hours. Evaluate the

post-processing options to correct the obtained coordinates. Evaluate the quality of
the results based on the sigma error

3 Install a GNSS base in the field and take measurements with the rover at different
points with RTK mode surveying
4 Take measurements with a garmin forerunner 235 GPS on a given route and

evaluate the speed variation along the route

14.17 Learning Outcome Assessment Strategy

Perform a summary of the chapter, “GNSS Surveying with Geomatics and R”, on a single A4 page
in order to show the student’s abilities to summarize a subject presenting key points considered
of greater importance today.

1http://www.sergeo.deg.uf'La.br/geomat'ica/book/cl4/presentat'ion.html#/
2https://youtu.be/UgRGABSKyvg
3https://youtu.be/KLCDQSyafYO
4https://youtu.be/pOquxBWVyU
5https://youtu.be/A4PuDVhlth
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law of sines, 232, 239

leaflet, 37

LearnGeom, 77, 91, 93, 105, 121, 179, 187, 189,
197, 205, 214, 222, 231, 236

least squares method, 199

least-squares fitting, 202

left deflections, 199

Leica TC2003, 168

Leica TC407, 168

lengths of chord-type line segments, 128

lengths of line segments, 126

leveling base, 369

library, 14, 38, 46, 93, 121, 144, 170, 189, 205,
236, 255, 287, 295, 337, 372
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light propagation, 150

line segments, 125

linear closure error, 202, 210
linear closure error tolerance, 202
linear error, 200

linear polygon closure error, 202
link-path traverse, 180

local attraction, 91

longitude, 91, 322

longitude and latitude coordinates, 172, 184,

265
longitude closure error, 202
lwgeom, 285, 295, 299

magnetic azimuth, 206
magnetic bearing, 200
magnetic declination, 89, 200
Magnetic Field Calculators, 91
magnetic meridian, 81
magneticField, 91

magnitude of error, 168, 210
magnitude of occurrence, 59
main vertical, 279

make_ EPSG, 296, 337

map projection, 324

map projection calculations, 336
map projections, 285

mapping of the points, 170
maps, 328

maptools, 37, 231, 236, 243, 249, 255, 2506, 286

mapview, 37, 347, 372, 373
Marino, 318

mask, 309

master control station, 349

mathematical cartography, 318, 320

matrix determinant, 269
measurement errors, 57
measurement uncertainties, 59
measurements, 29, 36, 38-40
memory for data storage, 356
Mercator projection, 285

meridian, 39, 80, 320, 323, 326, 327

meridian component, 282
meridian convergence, 89, 333
meridian of a record, 81

meter, 43

metric measurement system, 38
microprocessor, 356

military, 355

Ministério do Meio Ambiente, 33
mistake, 57, 60, 166

mistakes, 91, 180, 202, 204
mistakes in reading, 181
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Mollweide projection, 327
mosaic, 320
multi-channel, 355
multiplexed, 355

n-vector method, 289

National Aeronautics and Space
Administration, 33, 39

National Geophysical Data Centers, 91

National Grid, 329

National Oceanic and Atmospheric
Administration, 91

natural error, 119, 168

navigation, 355

navigation message, 354

Navigation with Indian Constellation, 348

NBR13133, 34

ne_download, 15

nearest_ feature, 285

nearest__point, 285

nominal scale, 45

non-singular position calculation functions, 289

normal distribution curve, 62

normal radius, 279

normal section, 279

North American Datum, 328

north direction, 200

numeric scale, 45

nvetr, 289, 362, 378, 379

oblique projections, 322

oce, 77, 91, 93, 101

off-line alignment error, 117
open-path traverse, 180, 199
optical plummet, 369
optical theodolites, 142
orbital positions, 349
orthographic projection, 201
orthometric altitude, 275, 333
orthophotochart, 320
orthophotomap, 320

packageVersion, 48

parallels of latitude, 323

partial projections, 208

partial water vapor pressure, 151
performing measurements, 55
perimeter, 190

perimeter description, 265
perpendicular distance, 320
phase measurement principle, 153
photo index, 320

photochart, 320
photogrammetry, 33
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pickets, 106, 180

plane Cartesian coordinate, 121

plane cartographic projection, 324

plane coordinate system, 81, 319

plane coordinate systems, 186, 203

plane coordinates, 231

plane polar coordinate system, 283

plane rectangular coordinates, 324

plane survey, 32

plane-rectangular system, 283

plate carrée, 286

Plate Carrée projection, 324

plot, 223, 256, 287, 302, 303, 308, 309, 373,
375, 376

plotKML, 197, 205, 223

pointLabel, 256

polar ice caps, 330

Polar projections, 322

polar radius, 294

pole, 330

polycylindrical projection, 327

polygon area, 130, 135, 267, 269

polygon dataset, 207

polygon mapping, 266

polygon vertices, 207

Polygonal, 179

polygonal adjustment, 203

polygonal dataset, 208

polygonal lines, 179

polygons, 79

position dilution of precision, 371

power supply, 356

precise atomic clocks, 349

precise point positioning, 363

precision, 58

Precision Positioning Service, 350

predict satellite positions, 349

prime vertical, 282

print, 46-48

probability of occurrence, 59

probability theory, 59

probable error, 62

PROJ, 205, 255, 294, 295, 337

PROJ4, 294

projdstring, 273, 294, 298, 328, 336

projection, 341

projection concepts, 327

projection parameters, 327

projectRaster, 310, 341

propagation rate, 150

pseudo-random noise number, 349

pull correction, 119

pulse method, 151
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Pythagorean theorem, 117, 169, 190, 238

qqline, 68

qqnorm, 68

gtm, 21, 300, 306, 324-327, 338, 373
quartz oscillator, 356

R, 35

rad, 94

radial traverse, 184

radial triangles method, 269

radian, 44

radio frequency, 356

radius vector, 356

random, 59

random error, 57, 59, 64, 65, 67, 119
range poles, 106

raster, 14, 37, 295, 317, 327, 337
raster data projection transformation, 307
raster re-projection, 327

raster reprojection, 328
rasterToContour, 341

rasterVis, 37

re-sampling, 328

read.table, 255, 256, 261, 265

read_ sf, 15, 374

readr, 13, 14

real-time corrections, 365

real-time kinematic, 143, 163, 365
receiver antennas, 164

receiver controller, 356
reconnaissance, 179

rectangular coordinates, 185, 203
rectangular grid, 324

rectangular plane coordinate, 231, 254
red laser, 150

reference coordinate system, 356, 357
reference datum, 319

reference direction, 200

reference ellipsoid, 333
referencenetworks, 290

reflector, 167

refraction of wave, 351

refractive index, 167

refractive index of the atmosphere, 150
refractive index value of glass, 167
registered meridian, 81

relate, 285

relative accuracy, 210

relative humidity, 168, 172

relative positioning, 320, 364
relative precision, 200, 202

remote sensing, 33
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repetitions, 60

residual, 60

return shift registers, 353

rgdal, 10, 13, 14, 37, 197, 205, 236, 249, 255,
294-296, 317, 336, 337

rgeos, 249, 254-256, 266

right deflections, 199

rnaturalearth, 10, 13, 14, 317, 324, 336338

route surveys, 182

route vectors, 373

rover, 363

RStoolbox, 37

s2, 285287, 289, 295

s2_ area, 288, 302

SAD-69, 276

sag, 119

sag error, 119

Sanding STS-750, 168

satellite clock correction coefficients, 353
satellite condition, 353

satellite constellation, 371
satellite health, 353

satellite number, 349

satellite signal, 353, 354, 362, 370
satellite survey, 33

satellite surveying, 369

satellites’ orbits, 349

scale, 45

scale factor, 330, 334

Schriever Air Force Base, 349
secant, 322

semiperimeter, 130

sequential, 355

series evaluation receivers, 351
series mapping receivers, 351

set_ units, 303

setwd, 37

sf, 10, 13, 14, 37, 46, 48, 249, 255, 267, 285,

295, 296, 301, 308, 324, 329, 336-338,

347, 372, 374, 379
sf_proj_info, 296, 337
Shuttle Radar Topography Mission, 295
signal frequency, 355
signal obstructions, 364
signal shift, 354
signal-to-noise ratio, 364
sine function, 325
single channel, 355
single-frequency, 355
sinusoidal projection, 326
sinusoidal pseudocylindrical projection, 325
SIRGAS-2000, 276, 290, 291

sky visualization, 348

sloping terrain, 109, 141

sos, 48

sources of error, 204

Southern Hemisphere, 330

sp, 37, 236, 298

space vehicle number, 349

Spatial, 337

Spatial Cartesian coordinate system, 283
spatial quality, 58

spatial resolution, 58

spatial segment, 349

spatial vector, 363
SpatialPolygonsDataFrame, 256, 268
spData, 287, 295, 302, 317, 336, 337
speed of electromagnetic energy, 150
sphere, 322

spherical cartographic projection, 322
spherical cosine law algorithm, 289
spherical projections, 285

spherical trigonometry calculations, 289
spheroid, 275

spTransform, 223, 243

SRTM, 307

SRTM digital elevation model, 337
st_area, 249, 267, 288, 301
st_as_sf, 308

st_ crs, 297, 337

st_ distance, 299

st_filter, 285

st_ geod_ area, 285, 302

st_ geod_ distance, 285, 299

st_ geod_ length, 285

st_ geod_ segmentize, 285

st_ join, 285

st_read, 297, 301, 372

st_set_ crs, 298, 338

st_ transform, 299, 303

st__write, 15, 302, 308

stadia, 140

stadia lines, 140

stadia observations, 140

stadia rod, 141, 210

stadimeter, 140

stadimeter method, 140

stainless steel blade, 106

stakes, 106, 180

standard deviation, 62

Standard Positioning Service, 350
starting point, 180

State Plane Coordinate System, 328
station vertices, 206

statistical indices, 59
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stats, 149, 169, 170

steel tapes, 106

summary, 19, 375

summer solstice, 318

surface measurement, 44

surface survey, 33

survey conditions, 144

survey data, 169, 268

survey station, 200

Surveying and Geomatics Educators Society,
34

surveyor’s chain, 106

sym__difference, 285

system, 290

systematic clock errors, 349

systematic error, 57, 60, 119, 351

table format, 265

tacheometry, 140

tachymetry, 139

tangent, 322

taping error, 119

taping pins, 107

technological advances, 35

temperature variations, 116

the most probable value, 60

theodolite, 56, 140

theodolite surveys, 200

theory of cartographic deformation, 319

tidyr, 10, 13

time dilution of precision, 371

time of week, 354

tmap, 10, 13, 14, 37, 295, 300, 306, 317, 324,
337, 347, 372, 373

tmap_ arrange, 21, 300, 306, 338

topography, 355

touches, 285

transformation of geodetic coordinates, 330

transmission ephemerides, 353

transverse projections, 322

travel time, 351

traverse, 179

traverse calculations, 205

traverse line, 182

traverse perimeter, 204

traverse stations, 183

traverses by azimuths, 182

traversing topographic survey, 179

triangle area, 130

trigonometric functions, 56, 325

trigonometric leveling, 231

true north direction, 200

ttm, 373
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type of error, 64
type of traverse, 180
types of topographic surveys, 198

union, 285

unique sequences of binary values, 353

unit conversion, 39, 40

United States Geological Survey, 33

units, 40, 295, 303, 317, 337

Universal Transverse Mercator, 169, 197, 274,
329

unzip, 296, 300, 372

Urban and Regional Information Systems
Association, 34

USAboundaries, 328, 329

USAboundariesData, 328

user equivalent range error, 371

user segment, 349

variance, 62

variation of magnetic declination, 89
vector, 289

vectors re-projection, 327
verification of angles, 180
verification of distances, 180
vertical, 275

vertical angle, 78

vertical control, 319

vertical datum, 281

vertical dilution of precision, 371
View, 296

Vincenty’s ellipsoid, 289
Vincenty’s sphere, 289

wavelength measurement, 151
wavelengths light sources, 150
web visualization, 373

WGS-84, 276, 290, 291, 324, 328
wooden pickets, 198

World Health Organization, 11
write.csv, 14

write.table, 145, 260, 265
writeOGR, 268

writeRaster, 310

yaw sensor, 119

zenith angle, 142



